【文档说明】安徽省五校2021届高三上学期12月联考文科数学试卷参考答案.doc,共(5)页,415.000 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-2143eafb89b8d455f4f2e1e7b494b3f3.html
以下为本文档部分文字说明:
2021届高三“五校”联考文数答案2020年12月4日一、选择题:题号123456789101112选项BDADDBACDACA1.B2.D3.A4.D5.D6.解:以AB,AD为坐标轴建立平面直角坐标系,如图:因为AB=2,所以A(0,0),B(2,0),M(2,1),
N(1,2)所以AM=(2,1),BN=(-1,2),AMBN(1,3).则22AM+BN=1+3=10,故选B.7.解:首先函数为偶函数,排除A,当10x,0xf;当1x,0xf,选C.8.解析:222(
)122xyxy,故选择C.9.解析:设公差为d,2a=1+d,31a=2+2d,6a=1+5d所以22+21+1+5ddd()()解得31d或,又因为d>0,所以3d所以20a1+3(20-1)=5810.由题意知()fx图象关于直线1x
对称,且()fx在区间(1),上单调递增22223xxx.故选择A11.解析:在ACDD中,2CD=,3AC=,120ADC??,由正弦定理得,sinsinACCDADCCAD=行,即32sin32
CAD=Ð,解得,2sin2CAD?,所以45CAD??,45BCDCAD???,选择C项.12.解析:由ababbalnln,得aabb1ln1ln,设xxxf1ln)(,则)()(afbf.由2ln)
(xxxf,可知)(xf在)1,0(上单调递增,在),1(上单调递减.故当1a且1b时,ab;当1a且1b时,ab.A选项中由)ln(|ln||ln|abba可知1a且1b,可得ba.故A选项正确另解:取e,1ab排除CD选项
;取1,1eab排除B选项.故选A.13.解析:由已知可得34zxy在点(25),处取得最大值14.14.解:向量(23)(41)akbk,,,,a与b方向相同,2(-1)-43=0kk且>0k,解得3k.3故答案为:.15.解析:
8077321211)(nnnaaaaaa所以202024011naaSaannn又因为解得n=10116.解:由0,πx得πππ(,π)666x,若函数()fx在0,π内恰有6个极值点,则11ππ13ππ262,解得
161933.17.解析:(1)axxfx2e)(................................................1分2e2e)1(af....................
................4分解得1a...................................5分(2)由(1)知2e)(xxf,,2e)(xxgx..............................6分,1
e)(xxg令,0)(xg得0x,................................................7分当)0,(x时,,0)(xg)(xg单调递减;当),0(
x时,,0)(xg)(xg单调递增;.....................................9分故当0x时,)(xg取极小值1)0(g............................
......................10分18.解:(1)函数231()4sin(sincos)323sin2sincos322fxxxxxxxπ3(1cos2)sin232sin(2)3xxx
,...................................................4分()fx的最小正周期为2ππ2.(5分)(2)在区间ππ,43上,π5ππ2,363x,.....
...............................................6分故当ππ232x时,函数()fx取得最小值,为-2,..............................................8分当ππ233
x时,函数()fx取得最大值,为3,故()fx的值域为2,3...........................10分若方程()fxm在ππ,43有实根,则实数m的取值范围
为2,3..................................................12分19.19.(1)因为41a,)(Nnnaann,241所以数列na是以4为首项以4为公比的等比数列...................
.................................2分所以nnna4441.........................................................................................
............3分nbnn4log212...................................................................................
...................5分(2)由(1)可知2)1(ncnn...............................................................7分22222
20212019321ccc)()()(22222219203412...................................................................
...........9分20321.............................................................................10分210220201
............................................................................12分20.(1)由sin2sinACab及正弦定理得2sincossinsins
inAACAB=,............................1分即2sincossinsincoscossinBACABAB==+,........................................
..........2分所以sincossincosBAAB=,即tantanAB=..........................................................4分所以AB=,
ABC为等腰三角形..........................................................................5分(2)因为AB=且3a=,所以3ba==..........
..........................................................6分由余弦定理得1cos3B=,所以22sin3B=................................................
................8分1sin222ABCSacBD==..........................................................................9分1sin32212sin22BCDABDBBCBDSB
CBSABABBDDD鬃===鬃,........................................................................10分所以36255BCDABCSSDD==.........................
..................................................12分(其他解法酌情给分)21.解析:(1)由题意得xmmmy12411...............
....................................2分xm39xxx31129xx31129xx1921,........................................
...........4分所以xxy1921(ax0,a为正实数)..........................................5分(2)由(1)得:xxy1921
19122xx,......................................7分易知20x,函数递增,2x,函数递减.又0a.....................
.....9分所以当2a时,31x,2x万元时,函数取得最大值为16万元;当20a时,ax万元时,函数取得最大值为(aa1921)万元............11分答:(1)函数关系为xxy1921(
ax0,a为正实数).(2)所以当2a时,31x,2x万元时,函数取得最大值为16万元;当20a时,ax万元时,函数取得最大值为(aa1921)万元.......12分22.解析(1)当0a时
ln()xfxx,21ln()=xfxx........................2分21ln()=00xfxxex........................3分21ln()=0xfxexx....................
....4分()fx单调递减区间为(e,),单调递增区间为(0,e,).......................5分(2)2211()ln()=(1+x)()=0xxxgxxexxgxeexx....................7
分设0x满足21xex即0201xex易得0(1,2)x...........................................................8分()gx在0(0,)x上为增函数,在0()x
,上为减函数020000()ln10xgxxexx....................................................................9分222()10egee
e.....................................................................10分12111()10egeeee................
........................................................11分()gx在(0,)上有两个零点........................................
.................................12分(其他解法酌情给分)