【文档说明】高考数学培优专题55讲:第29 数列的通项公式与前n项和【高考】.doc,共(18)页,1.695 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-20a13e1968286df37620ea4d50b47adc.html
以下为本文档部分文字说明:
1第二十九讲数列的通项公式与前n项和A组一、选择题1.已知na是等差数列,公差d不为零,前n项和是nS.若3a,4a,8a成等比数列,则A.10ad,40dSB.10ad,40dSC.10ad,40d
SD.10ad,40dS解:由于na是等差数列,故1(1)naand=+−,由于3a,4a,8a成等比数列,则2438aaa=.故2111(3)(2)(7)(0)adadadd+=++,化简可得:153ad=−.因此有:21503add=−,=4dS03
2)(2241−=+daad.2.设4()42xxfx=+,则1231011111111ffff++++=()A.4B.5C.6D.10解:若,121=+xx则)()(21xfxf+1212444242xxxx=+++12121212122424
242(444)1(42)(42)2444)xxxxxxxxxx+++++===++++(,∴12310511111111ffff++++=.
故选A3.设等差数列na的前n项和为nS,且满足21(0)nnaSAnBnA+=++,则1BA−=()A.1B.2C.3D.4解:设公差为d,则211(1)()22nnddaSandnan+=+−++−211()22ddnanad=++
+−所以11,,122ddABaad==+−=,所以11()1232daadBdA+−−−==2所以选C4.已知数列na满足1(3)(3)9nnaa+−+=,且,则数列1na的前6项和6S=()A.6B.7C.8D.9解:因为1(3)(
3)9nnaa+−+=,所以1133nnnnaaaa++−=,两边同时除以13nnaa+得11113nnaa+−=,又13a=,所以数列1na是以13为首项,13为公差的等差数列,所以13nna=,从而111()(1)26nnnaannS++==,67S=,
故选B二、填空题5.(2017年全国2卷理)等差数列na的前n项和为nS,33a=,410S=,则11nkkS==.【答案】21nn+【解析】设等差数列的首项为1a,公差为d,所以1123434102adad+=+=,解得111a
d==,所以()1,2nnnnanS+==,那么()1211211nSnnnn==−++,那么11111111221......21223111nkknSnnnn==−+−++−=−=+++
.6.数列}{na满足2,1181=−=+aaann,则=1a________.3解:由已知得2111aa=−,3211111aaa==−−,从而41311aaa==−,52111aaa==−,63111aaa==−,741aaa==,82111aaa
==−,从而1121a=−,所以112a=7.若数列{na}的前n项和为2133nnSa=+,则数列{na}的通项公式是na=______.解:当n=1时,1a=1S=12133a+,解得1a=1,当n≥2时,na=1nnSS−−=2133na+-(12133na−+)=12233n
naa−−,即12nnaa−=−,∴{na}是首项为1,公比为-2的等比数列,∴na=1(2)n−−.三、解答题8.在数列na中,13a=,122nnaan−=+−(2,*nnN).(Ⅰ)证明:
数列nan+是等比数列,并求na的通项公式;(Ⅱ)求数列na的前n项和nS.解:(Ⅰ)122nnaan−=+−11122211nnnnanannanan−−−++−+==+−+−,所以数列nan+是首项为114a
+=,公比为2的等比数列,所以11422nnnan−++==,所以12nnan+=−.(Ⅱ)因为12nnan+=−,所以231(21)(22)(2)nnSn+=−+−++−231(222)(1)23)nn+=+++−++++4(12)(1)122nnn−+=−−21822nnn+++=−9.设
nS是数列na的前n项和.已知0na,2243nnnaaS+=+.(I)求数列{}na的通项公式;(II)设11nnnbaa+=,求数列nb的前n项和.解:(I)由2243nnnaaS+=+,可知2111243nnnaaS++++=+.4可得221112()4nnnnnaaaaa++
+−+−=即2211112()()()nnnnnnnnaaaaaaaa+++++=−=+−由于0na,可得12nnaa+−=.又2111243aaa+=+,解得11a=−(舍去)13a=.所以na是首项为3,公差为2的等差
数列,通项公式为21nan=+.(II)由21nan=+可知:11nnnbaa+==1(21)(23)nn++111()22123nn=−++设数列nb的前n项和为nT,则1211111[()()23557nnTbbb=+++=−+−+11()]2123nn+−++111[]2323n=
−+3(23)nn=+.10.设等差数列na的公差为d,前n项和为nS,等比数列nb的公比为q.已知11ba=,22b=,qd=,10100S=.(I)求数列na,nb的通项公式;(II)当1d时,记
nnnacb=,求数列{}nc的前n项和nT.解:(I)由题意有,111045100,2,adad+==即112920,2,adad+==解得11,2,ad==或19,2.9ad==故121,2.nnnanb−=−=或11(279),929
().9nnnanb−=+=其中*Nn.(II)由1d,知21nan=−,12nnb−=,故1212nnnc−−=,于是2341357921122222nnnT−−=++++++,①2345113579212222222nnnT−=++++++
.②①-②可得5221111212323222222nnnnnnT−−+=++++−=−,故nT12362nn−+=−.11.已知数列na满足1a=1,131nnaa+=+.(Ⅰ)证明12na+是等比数
列,并求na的通项公式;(Ⅱ)证明:1231112naaa++…+.解:(I)由131nnaa+=+得1113()22nnaa++=+。又11322a+=,所以12na+是首项为32,公比为3的等比数列。1322nna+=,因此na的通项公式为312nna−=.
(Ⅱ)由(I)知1231nna=−因为当1n时,13123nn−−,所以1113123nn−−。于是11211111313...1...(1)33232nnnaaa−++++++=−.所以121113...2naaa+++B组一、选择题1.等差数列na的前n项和为nS,已知
2110mmmaaa−++−=,2138mS−=,则m=()(A)38(B)20(C)10(D)9解:因为na是等差数列,所以,112mmmaaa−++=,由2110mmmaaa−++−=,得:2ma-2ma=0,所以,ma=2
,又2138mS−=,即2))(12(121−+−maam=38,即(2m-1)×2=38,解得m=10,故选.C。62.已知等差数列{}na的首项11a=,公差0d,nS为数列{}na的前n项和.
若向量13(,)aa=m,133(,)aa=-n,且0?mn,则2163nnSa++的最小值为()A.4B.3C.232-D.92解:由13(,)aa=m,133(,)aa=-n,且0?mn,得23113aaa=,即2(12)1(112)dd+=+,又0d,所以2d=,从而21
nan=−,2nSn=,则2163nnSa++22216899(1)22(1)2422111nnnnnnnn++===++−+−=++++,当且仅当9(1)1nn+=+,即2n=时,上式等号成立,所以2163nn
Sa++的最小值为4,故选A.3.已知数列na的前n项和为nS,首项123a=−,且满足12nnnSaS++=(2)n,则2016S等于()A.20142015−B.20152016−C.20162017−D.20172018−解:12nnnSaS++=112n
nnnnSaSSS−++==−112nnSS−+=−,由已知可得1212SS+=−234S=−;2312SS+=−345S=−;3412SS+=−456S=−;……,可归纳出201620172018S=
−.故选D.4.已知数列na的通项公式为(1)(21)cos1(*)2nnnannN=−−+,其前n项和为nS,则60S=()A.60−B.30−C.90D.120解:由题意可得,当43nk=−时,431nkaa−==,当42nk=−时,4268n
kaak−==−,当41nk=−时,411nkaa−==,当4nk=时,48nkaak==,∴43424148kkkkaaaa−−−+++=,∴60815120S==.故选D.7二、填空题5.设nS是数列
na的前n项和,且11−=a,11++=nnnSSa,则=nS______.解:由已知得111nnnnnaSSSS+++=−=,等式两端同时除以1nnSS+得,1111nnSS+−=−,即1{}nS是以1−为首项,1−为公差的等差数列,则1nnS=−,
1nSn=−.6.(2016年浙江理)设数列na的前n项和为nS.若24S=,121nnaS+=+,nN,则1a=,5S=.解:由24S=,得124aa+=;由2112121aSa=+=+,故解得121,3aa==.再由121nnaS+=+,得121(
2)nnaSn−=+,从而12nnnaaa+−=,即13(2)nnaan+=,又213aa=,所以13(1)nnaan+=,从而551312113S−==−所以填:1,121三、解答题7.(16年全国II理)nS为等差数列na
的前n项和,且17=128.aS=,记=lgnnba,其中x表示不超过x的最大整数,如0.9=0lg99=1,.(Ⅰ)求111101bbb,,;(Ⅱ)求数列nb的前1000项和.【解析】⑴设na的公差为d,74728Sa==,∴44a
=,∴4113aad−==,∴1(1)naandn=+−=.∴11lglg10ba===,1111lglg111ba===,101101101lglg2ba===.⑵记nb的前n项和为nT,则1000121000Tbbb=+++
121000lglglgaaa=+++.当0lg1na≤时,129n=,,,;当1lg2na≤时,101199n=,,,;当2lg3na≤时,100101999n=,,,;当lg3na=时,1000n=.8∴1000091902900311893T=++
+=.8.设数列na的前n项和为nS,n.已知11a=,232a=,354a=,且当2n时,211458nnnnSSSS++−+=+.(1)求4a的值;(2)证明:11{}2nnaa+−为等比数列;(3)求数列na的通项公式.解析:(1)
当2=n时,1324854SSSS+=+,所以()=+++++2143215)(4aaaaaa1321)(8aaaa+++,即8741324=+−=aaa.(2)当2n时,因为112854−+++=+nnnnSSSS,所以054441112=−+−−−
+++nnnnnSSSSS,所以()()()0554411112=−++−+−−++++nnnnnnSSSSSS所以054112=++−+++nnnnaaaa,即)2(04412=+−++naaannn,所以))(2(
4112−=++naaannn当1=n时,4541,45123=−=aaa,所以12341aaa−=,满足)(式所以)1(4112−=++naaannn所以−=−+++nnnnaaaa212121112,所以112nnaa+−是以12112=−aa,公比为21
的等比数列.(3)由(2)得1112121121−−+==−nnnnaa,两边同乘以12+n,可得42211=−++nnnnaa,所以nna2是以221=a,公差为4的等差数列.所以()244122−=−+=nnann,所以1212224−−
=−=nnnnna.9.设数列na的前n项和为nS.已知233nnS=+.9(I)求na的通项公式;(II)若数列nb满足3lognnnaba=,求nb的前n项和nT.解:(I)由233nnS=+知,当2n时,12nS−=133n−
+,所以112()33nnnnSS−−−=−,即13nna−=;又当1n=时,13a=,所以有1313,2nnnan−==,.(II)由3lognnnaba=知,当1n=,1113Tb==;当2n,1311log(1)(
)3nnnnbana−==−,由123nnTbbbb=++++得231111[12()3()3333nT=+++++11(1)()]3nn−−①223411111()[1()2()3()33333nT=+++++1(1)()]3nn−②①-②得
:231221111[()()()]393333nnT−=+++++−1(1)()3nn−=111()213(1)()923nnn−−+−−,所以有113[1()]1313(1)()3423nnnTn−−
=+−−=13631243nn+−,经检验1n=时也符合,故对1n,均有n13631243nnT+=−.10.已知nS是数列na的前n项和,且2232,1,2,3nnSannn=+−−=(1)求证:数列2nan−为等比数列(2)设cosnnban=,求数列
nb的前n项和nT解:(1)2232nnSann=+−−①()()21121312nnSann−−=+−−−−②①−②可得:12224nnnaaan−=−+−即1224nnaan−=−+()112244221nnnananan−−
−=−+=−−2nan−为2q=的等比数列(2)由(1)可得:()11222nnana−−=−10令1n=代入2232nnSann=+−−1124Sa=−14a=22nnan−=22nnan=+()22cosnnbnn=+方法一:直接求和()()()()()
22cos221221nnnnnnbnnnn=+=+−=−+−()()()()()1222121121121nnnTn−−−=+−+−++−−−设()()()1211211nnPn=−+−++−()()()23111211nnPn+−=−
+−++−()()()()()()21(1)112111111(1)nnnnnPnn+−−−=−+−++−−−=+−−−()()111142nnnnP=−−+−()()()2121111342nnnnnT=−−+−−+−
方法二:分组求和()()()22,2122cos22122,2nnnnnnnnkbnnnnnk−−=−=+=+−=+=当n为偶数时()1112212222nnnnnbbnn−−−+=−−−++=+()()()12341nnnTbbbbbb−=
++++++()2141122222nn−−−=+++()2241221413nnnn−=+=−+−当n为奇数时()112211223nnnnnTTbnn−−=+=−+−−−1125233nn=−−−()221,23252,2133nnnnnkTnnk−+==
−−−=−方法三:分奇数项偶数项分别求和()()()22,2122cos22122,2nnnnnnnnkbnnnnnk−−=−=+=+−=+=当n为偶数时:()()1351246
nnnTbbbbbbbb−=+++++++++()()1311312222131nnbbbn−−+++=−+++−+++−212241112224122332nnnnn+−+−=−−=−+−−()()242422222
4nnbbbn+++=+++++++()22441222424122332nnnnnn+−++=+=−+−12233nnTn+=−+同理:当n为奇数时()112211223nnnnnTTbnn−−=+=−+−−
−25233nn=−−−()221,23252,2133nnnnnkTnnk−+==−−−=−C组一、选择题121.在数列{}na中,11a=,22a=,若2121nnnaaa++=−+,则na等于()A.222nn−+B.3221
121102nnn−+−C.222nn−+D.2254nn−+解:根据题意得211()()1nnnnaaaa+++−−−=,故1{}nnaa+−是首项为1,公差为1的等差数列,故11(1)1nnaann+−=+−=,由累加法得:当2n时,121321()()()
112(1)nnnaaaaaaaan−=+−+−++−=++++−2(1)2122nnnn−−+=+=,当1n=时111212a−+==符合,故选A.另法:用排除法,通过2121nnnaaa++=−+求得34a=,47a=,代入选项排除,得到A选项.2.在等差数列na
中,52=a,216=a,记数列1na的前n项和为nS,若1512mSSnn−+对*nN恒成立,则正整数m的最小值为()A5B4C3D2解:由题设得43nan=−,∴1512mSSnn−+可化为11141458115mnnn+++
+++,令111414581nTnnn=++++++,则1111114549818589nTnnnnn+=++++++++++,∴11111110858941828241nnTTnnnnnn+−=+−+−=++++++,∴当1n=时,nT取得最大值
11145945+=,由141545m解得143m,∴正整数m的最小值为5。3.数列{na}满足1(1)21nnnaan++−=−,则{na}的前60项和为()(A)3690(B)3660(C)1845(D)1830解法1:由题设知21aa−=1,①32aa+=3②43aa−=5③
54aa+=7,65aa−=9,76aa+=11,87aa−=13,98aa+=15,109aa−=17,1110aa+=19,121121aa−=,……13∴②-①得13aa+=2,③+②得42aa+=8,同理可得57aa+=2,68aa+=24,911aa+=2,1012aa+=40,
…,∴13aa+,57aa+,911aa+,…,是各项均为2的常数列,24aa+,68aa+,1012aa+,…是首项为8,公差为16的等差数列,∴{na}的前60项和为11521581615142++=1830.解法2:可证明:1414243444342424
1616nnnnnnnnnnbaaaaaaaab+++++−−−=+++=++++=+112341515141010151618302baaaaS=+++==+=4.数列na满足2113,12
nnnaaaa+==−+(*)nN,则122016111maaa=+++的整数部分是()A.0B.1C.2D.313,2a=解:211nnnaaa+=−+11(1)nnnaaa+−=−111111(1)1nnnnnaaaaa+==−−−−,所以122016120162016
1111112111maaaaaa=+++=−=−−−−由22121(1)0nnnnnaaaaa+−=−+=−,得1nnaa+,所以20162015337216aaa=,所以20161011a−,所以12m,
所以m的整数部分为1.二、填空题5.(16年上海理)无穷数列na由k个不同的数组成,nS为na的前n项和.若对任意Nn,3,2nS,则k的最大值为________.【答案】4解:要满足数列中
的条件,涉及最多的项的数列可以为2,1,1,0,0,0,−,所以最多由4个不同的数组成.146.数列}{na满足11=a,且11+=−+naann(nN*),则数列}1{na的前10项和为.解析:由题,11=a,212
=−aa,323=−aa,…,naann=−−1(nn,2N*),由累加法,求得2)1(+=nnan(nn,2N*),经检验1=n时也满足该通项,即2)1(+=nnan(nN*);因此)111(2)1(21+−=+=nnnnan,
12)111(2+=+−=nnnSn,112010=S.三、解答题7.(16年四川理)已知数列{na}的首项为1,nS为数列{na}的前n项和,11nnSqS+=+,其中0q,*nN.(1)若2322,,2aaa+成等差数列,求na的通项公式;(2)设双曲线222
1nyxa−=的离心率为ne,且253e=,证明:121433nnnneee−−+++.解析:(1)由已知,1211,1,nnnnSqSSqS+++=+=+两式相减得到21,1nnaqan++=?.又由211SqS=+得到21aqa=
,故1nnaqa+=对所有1n³都成立.所以,数列{}na是首项为1,公比为q的等比数列.从而1=nnaq-.由2322+2aaa,,成等比数列,可得322=32aa+,即22=32,qq+,则(21)(
2)0q+q-=,由已知,0q>,故=2q.所以1*2()nnan-=?N.(Ⅱ)由(Ⅰ)可知,1nnaq-=.所以双曲线2221nyxa-=的离心率22(1)11nnneaq-=+=+.由2513qq=+=解得43q=.因为2(1)2(1)1+kkqq-
->,所以2(1)1*1+kkqqk-->?N().15于是11211+1nnnqeeeqqq--++鬃?>+鬃?=-,故1231433nnneee--++鬃?>.8.(16年江苏理)记1,2,100U=…,.对数列()*nanN和U的子集T,若T=,定义0TS=;若
12,,kTttt=…,,定义12+kTtttSaaa=++….例如:=1,3,66T时,1366+TSaaa=+.现设()*nanN是公比为3的等比数列,且当=2,4T时,=30TS.(1)求数列na的通项公式;(2)对任意正整数()1100kk,若1,2,kT…,,
求证:1TkSa+;(3)设,,CDCUDUSS,求证:2CCDDSSS+.解:(1)由已知得1*13,nnaanN−=.于是当{2,4}T=时,2411132730TSaaaaa=+=+=.又30TS
=,故13030a=,即11a=.所以数列{}na的通项公式为1*3,nnanN−=.(2)因为{1,2,,}Tk,1*30,nnanN−=,所以1121133(31)32kkkrkSaaa−+++=+++=−.因此,1rkSa+.(3)下面分
三种情况证明.①若D是C的子集,则2CCDCDDDDSSSSSSS+=++=.②若C是D的子集,则22CCDCCCDSSSSSS+=+=.③若D不是C的子集,且C不是D的子集.令UECCD=,UFDCC=则E,F,EF=.于是CECDSSS=+,DFCDS
SS=+,进而由CDSS,得EFSS.设k是E中的最大数,l为F中的最大数,则1,1,klkl.16由(2)知,1EkSa+,于是1133lklFEkaSSa−+==,所以1lk−,即lk.又kl,故1lk
−,从而11121131311332222lklkEFlaSSaaa−−−−−−+++=+++==,故21EFSS+,所以2()1CCDDCDSSSS−−+,即21CCDDSSS++.综合①②③得,2CCDDSSS+.9数列na满足,224212
1−+−=++nnnnaaa*Nn.(1)求3a的值;(2)求数列na前n项和nT;](3)令11ba=,111(123nnTbn-=++++鬃?1)(2)nann+?,证明:数列nb的前n项
和nS,满足nSnln22+.解:(1)依题意,31233(23)aaaa=++-1231213222(2)4(4)22aa--+++=---34=,314a\=.(2)依题意,当1n时,123(23nnaaaa=+++)nna鬃?123
1(23(1))naaana--+++鬃?-12214(4)22nnnn--++=---12nn-=,211−=nna,21221-41-2111=+=−a又.211−=nna.)21(2211))21(1(11−−=−−=nnnT故(3)依题意有1211112nnnaaaba
nn−+++=++++17知11ba=,1221122aba=++,3213)31211(3aaab++=+=123nnSbbbb=++++111(1)23nTn=++++11111(1)(2)232nn−=++++−1112(1)2
3n++++记1()ln1fxxx=+-(1)x>,则211()fxxx¢=-210xx-=>()fx\在(1,)+?上是增函数,又(1)0f=,即()0fx>.又2k³且*NkÎ时,11kk>-
所以1()ln10111kkfkkkk=+->---即1()1kfkk>-12131ln,ln,ln21321nnn−即有11123lnlnlnln23121nnnn++++=−所以1
112(1)22ln23nn+++++即22ln.nSn+10.已知数列}{na满足211=a且−=+naaannn(21N*).(I)证明:)N(211+naann;(II)设数列}{2na的
前n项和为nS,证明:)2(21+n)N()1(21+nnnSn.解析:(I)由题意知210nnnaaa+−=−,即1nnaa+,故12na.由11)1(−−−=nnnaaa得)1(1−−=nnaa0)1()1(112−−−aaan,从而可得:102na.因此(111,2
1nnnaaa+=−,即)N(211+naann结论成立.(II)由题意得12+−=nnnaaa,所以11+−=nnaaS.18因为21nnnaaa+=−,所以11111nnnaaa+=+−.111112nnnnaaaa++−=,从而有11112nnnaa+−化简可得:)N(21
)1(211+++nnann,因此,)2(21+n)N()1(21+nnnSn.