【文档说明】《辽宁中考真题数学》2016年辽宁省朝阳市中考数学试卷(含解析版).pdf,共(34)页,698.432 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-20508726cb0fccbaee07af8a8ed2aff4.html
以下为本文档部分文字说明:
2016年辽宁省朝阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.(3分)在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3B.0C.D.﹣12.
(3分)“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×1083.(3分)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B
.C.D.4.(3分)方程2x2=3x的解为()A.0B.C.D.0,5.(3分)如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40°B.50°C.150°D.140°6.(3分)若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6B.3
.5C.2.5D.17.(3分)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π8.(3分)如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3B.
1.5C.4.5D.69.(3分)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4B.5C.6D.710.(3分)如图,抛物线y=ax2+bx+
c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则
y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2B.3C.4D.5二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对
应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.(3分)函数y=的自变量x的取值范围是.12.(3分)已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中
心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为.13.(3分)若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是.14.(3分
)如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.15.(3分)通过学习,爱好思考的小明发现,一元二次方程的根完
全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1
,x2,且x12+x22=1,则k的值为.16.(3分)如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结
论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为.三、解答题:本大题共9小题,共72
分,解答应写出必要的步骤,文字说明或证明过程.17.(5分)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.18.(6分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.19.(7分)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子
,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.20.(7分)如
图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)21.(8分)为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”
四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图,请根据以上信息,完成下列问题:(1)m=,n=,并将条形统计图补充完整;(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二
女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.22.(8分)如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与
⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.23.(9分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线
处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高
度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球
既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)24.(10分)小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△
ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个
顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC
的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.25.(12分)如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于
点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,
点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.2016年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小
题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.(3分)(2016•朝阳)在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3B.0C.D.﹣1【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最
小的数是0,故选:B.2.(3分)(2016•朝阳)“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×10
8【解析】将4.62亿用科学记数法表示为:4.62×108.故选:C.3.(3分)(2016•朝阳)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.【解析】根据题意的主视图为:,故选B4.(3
分)(2016•朝阳)方程2x2=3x的解为()A.0B.C.D.0,【解析】方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D5.(3分)(2016•朝阳)如图,已知a∥b,∠1=50°,∠2=90°,则∠3
的度数为()A.40°B.50°C.150°D.140°【解析】作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.6.(3分)(2016•朝阳)若一
组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6B.3.5C.2.5D.1【解析】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列
顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4
)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列
顺序;∴x的值为6、3.5或1.故选C.7.(3分)(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【解析】n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.
所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.8.(3分)(2016•朝阳)如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3B.1.5C.4.5D.6【解析】∵直线y=m
x(m≠0)与双曲线y=相交于A(﹣1,3),∴﹣m=3,,∴m=﹣3,n=﹣3,∴直线的解析式为:y=﹣3x,双曲线的解析式为:y=﹣解方程组得:,则点A的坐标为(﹣1,3),点B的坐标为(1,﹣3)∴点C的坐标为(1,0)∴S
△ABC=×1×(3+3)=3故:选A9.(3分)(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4B.5C.6D.7【解析】∵AF∥BC,∴∠FAD=∠ADB,
∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.10.(3分)(2016•朝阳)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(
﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数)
.其中正确结论的个数是()A.2B.3C.4D.5【解析】(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛
物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(
4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与
x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处
的横线上,不必写出解答过程,不填、错填,一律得0分.11.(3分)(2016•朝阳)函数y=的自变量x的取值范围是x≥2且x≠3.【解析】由题意得,,解得x≥2且x≠3,故答案为x≥2且x≠3.12.(3分)(2016•朝阳)已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C
(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为(1,2)或(﹣1,﹣2).【解析】∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,
2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).13.(3分)(2016•朝阳)若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关
系是a<m<n<b.【解析】∵(x﹣m)(x﹣n)=3,∴可得或,∵m<n,∴可解得x>n或x<m,∵方程的两根为a和b,∴可得到a>n或a<m,b>n或b<m,又a<b,综合可得a<m<n<b,故答案为:a<m<n<b.14.(3分)(2016•朝阳)如图,在平面直角坐标系中,矩形ABCO的边C
O、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【解析】设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42
=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(﹣10,3),故答案为(﹣10,3).15.(3分)(2016•朝阳)通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2
+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x
2,且x12+x22=1,则k的值为﹣1.【解析】∵x1,x2为一元二次方程x2+kx+k+1=0的两实数根,∴△=k2﹣4(k+1)≥0,且x1+x2=﹣k,x1x2=k+1,解得:k≤2﹣2或k≥2+2,又∵x12+x22=1,即(x1+x2)2﹣x1x2=1,∴(﹣k)2﹣(k
+1)=1,即k2﹣k﹣2=0,解得:k=﹣1或k=2(舍),故答案为:﹣1.16.(3分)(2016•朝阳)如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出
如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为(1)(3)(4)(5).【解析】(1)∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角
形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,在△AED和△DFB中,,∴△AED≌△DFB,故本小题正确;(2)当点E,F分别是AB,AD中点时(如图1),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BD
E=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;(3)∵△AED≌△DFB,∴∠ADE=∠DBF,∴∠BGE=∠BDG+∠DBG=∠BDG
+∠ADE=60°,故本选项正确.(4)∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠D
BC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.(如图2)则△CBM≌△CDN,(AAS)∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=
2××CG×CG=CG2,故本小题正确;(5)过点F作FP∥AE于P点.(如图3)∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF,∴BF=7GF,故本小题正确.
综上所述,正确的结论有(1)(3)(4)(5).故答案为:(1)(3)(4)(5).三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(5分)(2016•朝阳)(﹣1)2016+2•cos60
°﹣(﹣)﹣2+()0.【解析】原式=1+2×﹣4+1=1+1﹣4+1=﹣1.18.(6分)(2016•朝阳)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.【解析】原式=÷=•=,由﹣1≤x<3,x为整数,得
到x=﹣1,0,1,2,经检验x=﹣1,0,1不合题意,舍去,则当x=2时,原式=4.19.(7分)(2016•朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元
时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利
润为800元.【解析】设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.20.(7分)(201
6•朝阳)如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(
参考数据:)【解析】作CD⊥AB于D,根据题意,∠CAD=30°,∠CBD=45°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=2(海里),解得:CD=+1≈2.732>2.5,答:渔船继续追赶鱼群没有触礁
危险.21.(8分)(2016•朝阳)为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图,请根据以上信息,完成下列问题:(1)m=25,n=108,并将条形统
计图补充完整;(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1
)调查的总人数=15÷15%=100(人),所以m%=×100%=25%,即m=25,参加跳绳活动小组的人数=100﹣30﹣25﹣15=30(人),所以n°=×360°=108°,即n=108,如图,故答案为:2
5,108;(2)2000×=600,所以全校2000人中,大约有600人报名参加足球活动小组;(3)画树状图为:共有12种等可能的结果数,其中一男一女两名同学的结果数为8,所以恰好选中一男一女两名同学的概率==.22.(8分)(2016•朝阳)如图,Rt△ABC中,
∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.【解析】(1)BC是⊙O的切线,理由
:如图,连接OD,∵AD为∠BAC的平分线,∴∠BAC=2∠BAD,∵∠DOE=2∠BAD,∴∠DOE=∠BAC,∴OD∥AC,∴∠ODB=∠ACB=90°,∵点D在⊙O上,∴BC是⊙O的切线.(2)如图2,连接OD,由(1)知,OD∥AC,∴,∵,∴,∵OD∥
AC,∴,∴∵CD=3,∴DB=6,过点D作DH⊥AB,∵AD是∠BAC的角平分线,∠ACB=90°,∴DH=CD=3,在Rt△BDH中,DH=3,BD=6,∴sin∠B==,∴∠B=30°,BO===4,∴∠BOD=60°,在Rt△ODB
中,sin∠DOH=,∴,∴OD=2,∴BE═OB﹣OE=OB﹣OD=4﹣2=2.23.(9分)(2016•朝阳)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点
O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2
)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围
是多少?(排球压线属于没出界)【解析】(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x﹣7)2+3.2,将点C(0,1.8)代入,得:49a+3.2=1.8,解得:a=﹣,∴排球飞
行的高度y与水平距离x的函数关系式为y=﹣(x﹣7)2+;(2)由题意当x=9.5时,y=﹣(9.5﹣7)2+≈3.02<3.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即
a=,∴此时抛物线解析式为y=(x﹣7)2+h,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.24.(10分)(2016•朝阳)小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个
顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点
共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一
点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.【解析】(1)如图1
,将△ACP绕点A逆时针旋转60°得到△ADE,∴∠PAD=60°,△PAC≌△DAE,∴PA=DA、PC=DE、∠APC=∠ADE=120°,∴△APD为等边三角形,∴PA=PD,∠APD=∠ADP=60°,∴∠APB+∠A
PD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,∴PA+PB+PC=PD+PB+DE=BE.∴PA+PB+PC的值最小.(2)如图,分别以AB、BC为边在△ABC外作等边三角形,连接CD、AE交于点P,∴AB=DB、BE=
BC=8、∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,∵,∴△ABE≌△DBC(SAS),∴CD=AE、∠BAE=∠BDC,又∵∠AOP=∠BOD,∴∠APO=∠OBD=60°,在DO上截取DQ=AP,连接BQ,在△ABP和△DBQ中,∵,∴
△ABP≌△DBQ(SAS),∴BP=BQ,∠PBA=∠QBD,又∵∠QBD+∠QBA=60°,∴∠PBA+∠QBA=60°,即∠PBQ=60°,∴△PBQ为等边三角形,∴PB=PQ,则PA+PB+PC=DQ+
PQ+PC=CD=AE,在Rt△ACE中,∵AC=6、CE=8,∴AE=CD=10,故点P到三个顶点的距离之和的最小值为10.25.(12分)(2016•朝阳)如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物
线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的
点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.【解析】(1)如图1,把T(1,﹣)代入抛物线y=(x﹣2)(x+a)得:﹣=(1﹣2)(1+a),解得:a=4
,∴抛物线的解析式为:y=x2+x﹣2;(2)当x=0时,y=×(﹣2)×a=﹣2,∴C(0,﹣2),当y=0时,(x﹣2)(x+a)=0,x1=2,x2=﹣a,∴A(﹣a,0)、B(2,0),如图2,过D作DE⊥x轴于E,设D
(m,n),∵点D在第二象限,∠DAB为钝角,∴分两种情况:①如图2,当△BDA∽△ABC时,∠BAC=∠ABD,∴tan∠BAC=tan∠ABD,即,∴,n=,则,解得:m=﹣2﹣a或2,∴E(﹣2﹣a,0),由勾股定理得:AC=,∵,∴==,BD=,∵△BDA
∽△ABC,∴,∴AB2=AC•BD,即(a+2)2=•,解得:0=16,此方程无解;②当△DBA∽△ABC时,如图3,∠ABC=∠ABD,∵B(2,0),C(0,﹣2),∴OB=OC=2,∴△OBC是
等腰直角三角形,有BC=2,∴∠OCB=∠OBC=45°,∴∠ABC=∠ABD=45°,∴DE=BE,n=﹣m+2,∴BD=,∵△DBA∽△ABC,∴,∴AB2=BD•BC,∴(a+2)2=•2=4n,则,解得:,则a=2+2;(3)当x=6时,y=(6﹣2)(6+4
)=10,∴Q(6,10),如图4,作P关于x轴的对称点P′,过P′作P′G∥x轴,且P′G=2,连接GQ交x轴于N,过P′作P′M∥GN,交x轴于M,此时,QG就是MP+NQ的最小值,由于PQ、NM为定值,所以此时,四边形PMNQ的周长最小,∵P(﹣1,1),∴P′(﹣1,﹣1)
,∵P′G∥MN,P′M∥GN,∴四边形P′GNM是平行四边形,∴MN=P′G=2,NG=P′M=PM,∴G(1,﹣1),设GQ的解析式为:y=kx+b,把G(1,﹣1)和Q(6,10)代入得:,解得:,∴GQ的解析式为:y=x﹣,当y=0时,x=,∴N(,0),∵MN=2,∴M(﹣
,0).获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com