【文档说明】2021届湖南省衡阳市高中毕业班联考(一)(一模)数学答案.pdf,共(9)页,548.996 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-17f8de3458fa4f5802649ed2528b573d.html
以下为本文档部分文字说明:
1/92021届高中毕业班联考(一)参考答案1.【答案】C【简析】【法一】两边取模可得:551.zz【法二】求得543,1.345iizzi2.【答案】D【简析】如图可知,MN,故N的子集有3
2个.3.【答案】D【简析】3袋垃圾中恰有1袋投放正确的情况有31113AC种情形,由古典概型计算公式得三袋恰投对一袋垃圾的概率为21331113AACP,选D.4.【答案】A【简析】依题:336()20
1Caa,含4x项的系数516(1)6C.5.【答案】C【简析】易知:12ab,2()14abab,1babaa,显然成立.6.【答案】B【简析】【法一】()0abc=,如图,OABC,直线O
A交BC于D,30DOB,则c在a上的投影为cos3023ODb.【法二】cos,cos,23ab=accac=bab.7.【答案】A【简析】设2211,rAFrAF,
在21FAF中,由2221212122cos60FFAFAFAFAF,得21221221212221244rrarrrrrrrrc,故222144acrr.2121AFAFAO,21122124AO
AFAFAFAF,2122122121222123441341414rrarrrrrrrra,故2214arr.222444aca,所以离心率2ace.8.
【答案】B【简析】由条件可得,()cos()3gxx,作出两个函数图象,如图:yx2/9A,B,C为连续三交点,(不妨设B在x轴下方),D为AC的中点,由对称性,则ABC是以B为顶角的等腰三角形,2ACT,由coscos3x
x,整理得cos3sinxx,得3cos2x,则32CByy,所以23BBDy,要使ABC为钝角三角形,只须4ACB即可,由3tan1BDACBDC,所以3
03,选.B9.【答案】BCD【简析】由表中数据可知3x,代入回归方程知142y,于是151a,B正确,将7x代入回归方程得318y,D正确,故本题答案是BCD.10.【答案】BC【简析】若nb是等差数列,据等差数列求和
公式知需1,nbbknkZ,则nb为“吉祥数列”,检验,AC可知C正确.nb是摆动数列,由并项法知:24,2nnSnSn,21242nnSSnn,故B正确,根据等比数列求和公式知D错误.11.【答案】BCD【简析】易知准线方程为yxCpy4:,2,12.设直
线11xky,代入42xy,得0142kkxx,当直线与C相切时,有0,即012kk,设TBTA,斜率分别为21,kk,易知21,kk是上述方程两根,故121kk,故TBTA.设2211,,,yxByxA,其中4
,4222211xyxy.则112124:xxxxyTA,即112yxxy,代入点)1,1(,得02211yx,同理可得22220xy,故022:yxAB,故12ABk.3/9由21444212122
212121xxxxxxxxyykAB,得1221xx,即AB中点横坐标为1.12.【答案】ABD【简析】,()()xRfxfx,()fx是偶函数,A正确;(2)()fxfx,由函数的奇偶性与周期性,只须研究()
fx在[0,2]上图象变化情况.sinsinsin2,0(),1,2xxxexfxexe当0x时,sin()2cosxfxxe,则()fx在0,2x上单调递增,在,2上单调递减,此时()[2,2];fxe当2x时,
sinsin()cosxxfxxee,则()fx在3[,]2x上单调递增,在3,22x上单调递减,此时1()2,fxee,故当02x时,min()2fx,B正确.因()fx在,2x上单调递减,又()fx是偶函数,故()f
x在,2上单调递增,故C错误.对于D,转化为2()fxx根的个数问题.因()fx在0,2上单调递增,在,2上单调递减,在3,2上单调递增,在3,22
上单调递减.当(,)x时,()2fx,22x,2()fxx无实根.(3,)x时,max262()xefx,2()fxx无实根,3,2x时,显然x为方程之根.sinsi
nsinsin(),()cos0xxxxfxeefxxee,3123322fee,单独就这段图象,3()02ff,()fx在3,2
上变化趋势为先快后慢,故()gx在3,2内有1个零点,由图象知()gx在3,32内有3个零点,又5()252fe,结合图象,知D正确.4/913.【答案】104x(答案不唯一,请阅卷教师按照题意
自行把握).【简析】22124202xxxxx,依题有:1,(0,)2xAA.14.【答案】0【简析】()(2)1fxfx,两边同时求导可得:()(2)0fxfx,(2019)(2021)0.ff15.【答案】
24或8【简析】BPPC,AO面BPC,三棱锥APBC的外接球球心M在AO上,且4r外,2MO,4MA,6AO或2AO1126243V圆锥或112283V
圆锥.16.【答案】31624【简析】以经过,AB的直线为x轴,线段AB的垂直平分线为y轴,建立直角坐标系,如图,则(2,0)A,(2,0)B,设(,),3PAPxyPB,2222(2)(2)3xyxy,得:12)4(0482222yxx
yx,点P的轨迹为圆(如图),其面积为12.【法一】22244PAPBxyOP,如图当P位于点D时,2OP最大,2OP最大值为31628)324(2,故PAPB最大值是31624.【法二】由极化恒等式知:2224PAPBOPOBOP,以下同法一.四、解
答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)成等差数列,CABcabsinsinsin22------------------------------1分当3A时,CBsin3sinsin2,即)3
2sin(3sinsin2BB21)6sin(B而3,66,266,320BBBB-----------------------------5分(2)由余弦定理及cab2,222
()3112cos()2842acaccaBacac,当ca时取等号.cba,,5/9结合余弦函数的单调性可知:30B.----------------------------------------
------------------------------------10分18.【解析】(1)依题,在1122nnnaa两边同时除以12n,得:11122nnnnaa,故数列{}2nna为等差数列
.-----------------------------------------------------------------------5分(2)由上易得:1(1)2nnann,可得2nnan--------------------
---------------------------------------7分【法一裂项相消】由1122nnnaa可得:112nnnnaaa-------------------------------------
------------8分则数列1{2}nna的前n项和1121()()()nnnnnSaaaaaa111(1)22nnaan-------------------------------
-----------------12分【法二乘比错位】12(2)2nnnan--------------------------------------------------------------------------------7分则数列1{2}nna
的前n项和123324252(2)2nnSn23123242(1)2(2)2nnnSnn两式相减得:2316222(2)2nnnSn-------------
----------------------------------------------10分1(1)22nnSn--------------------------------------------------
-----------------------------------12分19.【解析】(1)设40个槟榔芋中,每个槟榔芋的平均质量为q,则6.19324006.022012.020044.018024.01601.014004.0
q(克)------------4分所以这批槟榔芋的数量约为5176.193100000(个)-------------------------------------------------------------------5分(2)X所有可能取
值为0,1,2,3.由表中数据可知,任意挑选一个槟榔芋,质量在170,150的概率为101505-----------------------------------6分所以729.010903X
P243.01011091213CXP027.010110922123CXP001.010133XP------------------------1
0分故X的分布列为:X0123P729.0243.0027.0001.06/9EoH所以3.0001.03027.02243.01729.00XE-----------------------
-----------------------12分20.【解析】【法一】(等积法)(1)即求点B到平面11ACD之距h.1111111843443333BACDABCDABCDAABDVVV,1122ADCD,1123AC,如图,5DH,111143
235323BACDVh44555h.----------------------------------------------------------6分【法二】如图,连1111ACBDO,取1DD中点H,在正方形11DDBB中,易证:DOHBBHO
DE,有BEOD①,又111111111ACBDACACBB面1BD11ACBE②,由①②可得:BE面11ACD,在BDE中,45cos5BEBDDBEBEBDBH--------
------------------------------6分【法三】如图建系,各点坐标如图,面11DAC的法向量为(,,)xyzm,1122003200yzDAxyzDC
mm,取1y,1z,3x,m可为3,1,144555BDBEmm-------------------------------------------------6分(2)如图建系,各
点坐标如图,面11DAC的法向量为(,,)xyzm,//BEm,1122003200yzDAxyzDCmm,取1y,1z,3x,m可为3,1,1,同理可求面1FCB的法向量53,1,23n,46cos,sin52003
mn.-------------------------------------------------------------------------------------12分21.【解析】(1)设公共点为P,则rPFrPF4,21,故12124P
FPFFF即公共点P的轨迹为椭圆.-------------------------------------------------------------------------------------------------2分7/9且2,42aa,又
3,12bc,故曲线134:22yxE.------------------------------------------------4分(2)当直线PQ斜率不存在时,712:xPQ,代入E得712y,易知OQOP;------
------5分当直线PQ斜率存在,设mkxyPQ:,PQ与圆O相切,22212171mrmkk---------6分将PQ方程代入E,得0124834222mkmxxk,34124,3482221221kmxxkkmxx,221
212121212121OPOQxxyyxxkxmkxmkxxkmxxm----------------------7分2222222348341241mkmkkmk341127222kkm将171222km代入
,得0OPOQ,即OQOP---------------------------------------------------------10分综上,恒有OQOP,2127APAQAPAQOA.----------------------------------
----------12分【法二】当直线PQ斜率不存在时,712:xPQ,代入E,得712y,127APAQAPAQ;当直线PQ斜率存在时,设mkxyPQ:,PQ与圆O相切,rkm12,即171222km.将PQ方程代入E,得
0124834222mkmxxk,34124,3482221221kmxxkkmxx,7122171221212212122mkmxxkmkxxrOPAPkmxkkmxxm7121277122127121212,同理可得kmxA
Q7121272,故221212712127kAPAQmxxkmxx---------------------------------------------------------------------10分将21212228412,4343kmmxxxxkk
,及171222km代入,可得712AQAP.综上127APAQAPAQ.(注:本题也可联想射影定理思考)------------------------------------12分8/922.【解析】(1)当1ka时,1xxye,由2(1)x
xxxexexyee------------------------------------1分则函数1xxye在(,0)上单调递增,在(0,)上单调递减,当0x时,max1y-------------------------4分.(2)【法一】记()()()axh
xfxgxekxa(0,0xa),则()()axaxkhxaekaea①当1ka时,()hx在(0,)上单调递增,()(0)1hxha,由10a,可得01a---------5分②当1
ka时,()hx在1(0,ln)kaa上单调递减,在1(ln)kaa,上单调递增,min1()(ln)khxhaalnkkkaaaa,由min()0hx,可得21ln0kaak,令2()1lnkaaak
---------------------7分1.若1k时,对于①,1ka,此时a不唯一(舍去)2.若1k时,对于①,11a,即1a对于②,01a时,由221()1ln=1+lnaaaaa,
所以当01a时,2112()2aaaaa,当212a时,()a为减函数,()(1)0a,此时a不唯一(舍去)---------------------------------
8分3.若1k时,对于①,a无解,对于②,转化为2()1ln0kaaak在(0,)k内仅有唯一解的问题.2122()akaaakak,()a在(0,)2k上单调递增,在(,2k)k上单调递减,1(,)2kak,()10kk;21(
0,)2kae,211()ln0keek,要使a唯一,只须()02k,即11202k,解得2ek,此时22kea符合题意-------------------------------------------
--------11分综上:存在2ek,有唯一的22kea符合题意--------------------------------------------------------------12分【法二】原问题等价于()10axkxaxe恒成立,2(
)axakxakxe,(0)1a--------------5分1°.当00,()0,()(0,)kxxx时,在上单调递增,要使()0x恒成立,只须10a即可,得01a,此时a不唯一(舍去)-
--------------------------------------------------------------------------------------6分2°.当0k时,220,(),()kakaxxxxakak可得单调递增;单调递减9/9若01a时
,221(0)0,=10,()0akkakxakae满足,此时a不唯一(舍去)若1a时,221(0)0,=10,akkakakae由零点存在性定理得:200
()00,kaxxak,且,当00,()0xxx时,与题意矛盾(舍去)--------------------------------------------------------------------------9分3°.当20ka
时,()(0,),(0)10xa在上单调递增只须,此时a不唯一.当222,,()0,()kakakaxxxxakak单调递增;时单调递减,要使()0x恒成立,且a唯一,只须221=10a
kkakakae,所以有21lnakka,令222()lnln1,()akaHaakHakak,故()Ha在(0,)2ka上单调递增,在(,)2ka上单调递减
,则须使02kH,解得,22eeka符合题意,综上:,22eeka----------------12分