【文档说明】备战2024年高考物理抢分秘籍(新高考通用)秘籍06 天体运动中的五类热点问题和三大概念理解应用 Word版无答案.docx,共(16)页,959.008 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-12991a53f5c7e21222ebe79e94be4878.html
以下为本文档部分文字说明:
秘籍06天体运动中的五类热点问题和三大概念理解一、开普勒行星运动定律定律内容图示或公式开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在的一个焦点上开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内
扫过的面积相等开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等kTa=23,k是一个与行星无关的常量注意:(1)行星绕太阳运动的轨道通常按圆轨道处理.(2)由开普勒第二定律可得12Δl1r1=1
2Δl2r2,12v1·Δt·r1=12v2·Δt·r2,解得v1v2=r2r1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.(3)开普勒第三定律a3T2=k中,k值只与中心天体质量有关二、万有引力定律的理解1.万有引力与重力的关系地球对物体的万有引力F表
现为两个效果:一是重力mg,二是提供物体随地球自转的向心力F向.(1)在赤道上:GMmR2=mg1+mω2R.(2)在两极上:GMmR2=mg0.(3)在一般位置:万有引力GMmR2等于重力mg与向心力F向的矢量和.越靠近南、北两极,g值越大,由于物体随地
球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR2=mg.2.星球上空的重力加速度g′星球上空距离星体中心r=R+h处的重力加速度为g′,mg′=GmM(R+h)2,得g′=GM(R+h)2.所以gg′=(R+h)2R2.3.万有引力的“两点理解”和
“两个推论”(1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力.②地球上的物体受到的重力只是万有引力的一个分力.(2)两个推论:①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引
力的合力为零,即∑F引=0.②推论2:在匀质球体内部距离球心r处的质点(m)受到的万有引力等于球体内半径为r的同心球体(M′)对其的万有引力,即F=GM′mr2.三、宇宙速度的理解与计算1.第一宇宙速度的推
导方法一:由GMmR2=mv21R,得v1=GMR=6.67×10-11×5.98×10246.4×106m/s=7.9×103m/s.方法二:由mg=mv21R得v1=gR=9.8×6.4×106m/s=7.9×103m/s.第一宇宙
速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2πRg=5078s≈85min.2.宇宙速度与运动轨迹的关系(1)v发=7.9km/s时,卫星绕地球表面做匀速圆周运动.(2)7.9km/s<v发<11.2km/s,卫星
绕地球运动的轨迹为椭圆.(3)11.2km/s≤v发<16.7km/s,卫星绕太阳做椭圆运动.(4)v发≥16.7km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.3.对第一宇宙速度的理解1.第一宇宙速度是人造地球卫星的最小发射速度,也是卫星贴近地面运行的速度,即人造
地球卫星的最大运行速度.2.当卫星的发射速度v满足7.9km/s<v<11.2km/s时,卫星绕地球运行的轨道是椭圆,地球位于椭圆的一个焦点上.四、赤道上的物体与近地卫星、同步卫星的比较1.分析人造卫星运动的两条思路(1)万有引力提供向心力即GMmr2=ma。(2)天体对其表面的物体的万有引
力近似等于重力,即GMmR2=mg或gR2=GM(R、g分别是天体的半径、表面重力加速度),公式gR2=GM应用广泛,被称为“黄金代换”。2.人造卫星的加速度、线速度、角速度、周期与轨道半径的关系GMmr2=
ma→a=GMr2→a∝1r2mv2r→v=GMr→v∝1rmω2r→ω=GMr3→ω∝1r3m4π2T2r→T=4π2r3GM→T∝r3越高越慢3.同步卫星的六个“一定”4.赤道上的物体与近地卫星、同步卫星的比较如图所示,a为近地卫
星,半径为r1;b为地球同步卫星,半径为r2;c为赤道上随地球自转的物体,半径为r3。比较内容赤道表面的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力线速度v1=ω1Rv2=GMRv3=ω3(R+h)=GMR
+hv1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=GMR3ω3=ω自=GM(R+h)3ω1=ω3<ω2向心加速度a1=ω21Ra2=ω22R=GMR2a3=ω23(R+h)=GM(R+h)2a1<
a3<a2各运行参量比较的两条思路(1)绕地球运行的不同高度的卫星各运行参量大小的比较,可应用:GMmr2=mv2r=mω2r=m4π2T2·r=ma,选取适当的关系式进行比较。(2)赤道上的物体的运行参量与其他卫星运行参量大小的比
较,可先将赤道上的物体与同步卫星的运行参量进行比较,再结合(1)中结果得出最终结论。五、卫星的变轨和对接问题1.变轨原理当卫星由于某种原因速度逐渐改变时,万有引力不再等于向心力.卫星将做变轨运动.(1)当卫星的速度逐渐增加时,GMmr2<mv2r,即万有引
力不足以提供向心力,卫星将做离心运动,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小.(2)当卫星的速度逐渐减小时,GMmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GMr可
知其运行速度比原轨道时增大.2.变轨过程分析由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道,如图所示,发射同步卫星时,可以分多过程完成:(1)先将卫星发送到近地轨道Ⅰ;
(2)使其绕地球做匀速圆周运动,速率为v1,变轨时在P点点火加速,短时间内将速率由v1增加到v2,使卫星进入椭圆形的转移轨道Ⅱ;(3)在Q点再次点火加速进入圆形轨道Ⅲ,最后以速率v4绕地球做匀速圆周运动.3.卫星的对接问题(1)低轨道飞船与高轨道空间站
对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.4.航天器变轨问题的三点注意事项(1)航天器变轨时半径的
变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v=GMr判断。(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。5.卫星变轨的实质两类变轨
离心运动近心运动变轨起因卫星速度突然增大卫星速度突然减小受力分析GMmr2<mv2rGMmr2>mv2r变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动6.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为
v1、v3,在轨道Ⅱ上过A点和B点时速率分别为vA、vB.在A点加速,则vA>v1,在B点加速,则v3>vB,又因v1>v3,故有vA>v1>v3>vB.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经
过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,
则E1<E2<E3.六、天体质量和密度的计算类型方法已知量利用公式表达式备注质量的利用运行天体r、TGm中mr2=m4π2T2rm中=4π2r3GT2只能得到中心天体的质量r、vGm中mr2=mv2rm中=rv2G计算v、TGm中mr2=mv2r,
Gm中mr2=m4π2T2rm中=v3T2πG利用天体表面重力加速度g、Rmg=Gm中mR2m中=gR2G密度的计算利用运行天体r、T、RGm中mr2=m4π2T2rm中=ρ·43πR3ρ=3πr3GT2R3当r
=R时,ρ=3πGT2利用近地卫星只需测出其运行周期利用天体表面重力加速度g、Rmg=Gm中mR2,m中=ρ·43πR3ρ=3g4πGR七、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径
上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA-ωB)t′=(2n-1)π(n=1,2
,3…)。3.“行星冲日”现象在不同圆轨道上绕太阳运行的两个行星,某一时刻会出现两个行星和太阳排成一条直线的“行星冲日”现象,属于天体运动中的“追及相遇”问题,此类问题具有周期性。天体相遇与追及问题的处理方法首先根据GMmr2=mrω2判断出谁的角速度大,然后根据两星
追上或相距最近时满足两星运动的角度差等于2π的整数倍,即ωAt-ωBt=n·2π(n=1、2、3……),相距最远时两星运行的角度差等于π的奇数倍,即ωAt-ωBt=(2n+1)π(n=0、1、2……)八、双星或多星模型1.双星模型(1)模型构建:绕公共圆心转动的两个星体组成的系
统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力提供,即Gm1m2L2=m1ω12r1,Gm1m2L2=m2ω22r2②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2.③两颗星的轨道半径与它们之间的距离关系为:r1+r2=L.2.三星模型(1)三颗星体位于同
一直线上,两颗质量相等的环绕星围绕中央星在同一半径为R的圆形轨道上运行如图甲所示.(2)三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)如图乙所示,三颗行星位于一正三角形的顶点处,都绕三角形的中心做圆周运动.每颗行星运行所需向心力都由其
余两颗行星对其万有引力的合力来提供.三颗行星转动的方向相同,周期、角速度相等.【题型一】三大基础概念的理解应用【典例1】(2024·浙江嘉兴·一模)太阳系内很多小天体和八大行星一样围绕太阳运行。之前,能进入金星轨道内侧的小天体仅发现21个,但它们一部分轨道在金星轨道外侧。最近科学家第
一次发现了完全在金星轨道内侧运行的一个小天体“AV2”。则()A.“AV2”没有落至太阳上是因为它质量小B.“AV2”绕太阳运行周期大于金星C.“AV2”在任何位置的加速度都大于金星D.这些小天体与太阳的连线在单位时间内扫过的面积都相等【典例2】(2
024·湖南衡阳·二模)2024年1月17日22时37分,天舟七号货运飞船发射升空,顺利进入近地点200km、远地点363km的近地轨道(LEO),经转移轨道与位于离地高度400km的正圆轨道上的中国空间站完成
对接,整个对接过程历时约3小时,轨道简化如图所示。下列说法正确的是()A.天舟七号的发射速度大于7.9km/sB.天舟七号在LEO轨道的运行周期大于空间站的运行周期C.天舟七号在转移轨道经过N点时的加速度小于空间站经过
N点时的加速度D.空间站的运行速度大于近地卫星的运行速度【典例3】(2024·北京海淀·一模)如图所示,嫦娥五号、天问一号探测器分别在近月、近火星轨道运行。已知火星的质量约为月球质量的9倍、半径约为月球半径的2倍。假设月球、火星
可视为质量均匀分布球体,忽略其自转影响,则下列说法正确的是()A.月球表面重力加速度大于火星表面重力加速度B.嫦娥五号绕月球的运行速度大于天问一号绕火星的运行速度C.相同时间内,嫦娥五号与月球的连线扫过的面积与天问一号与火星的连线扫过的面积相等D.嫦娥五号绕月球转动轨道半径的
三次方与周期的平方的比值1312rT小于天问一号绕火星转动轨道半径的三次方与周期的平方的比值3222rT1.(2024·新疆塔城·二模)2023年7月10日,经国际天文学联合会小行星命名委员会批准,中国科学院紫金山天文台发现的、国际编号为3813
23号的小行星被命名为“樊锦诗星”。如图所示,“樊锦诗星”绕日运行的椭圆轨道面与地球圆轨道面间的夹角为20.11度,轨道半长轴为3.18天文单位(日地间距离为1天文单位)。若只考虑太阳对行星的引力,则“樊锦诗星”绕太阳一圈大约需要
()A.3.7年B.5.7年C.7.7年D.9.7年2.(2024·内蒙古赤峰·一模)物理学是集科学知识、科学方法和科学思维为一体的学科。下列有关科学思维方法的叙述正确的是()A.图甲所示,通过平面镜观察桌面的微小形变——放大法B.图乙所示,探究两个互成角度
共点力的合成实验——理想模型法C.图丙所示,卡文迪许利用扭秤实验测量引力常量——控制变量法D.图丁所示,伽利略利用理想斜面实验对力和运动关系的研究——极限法3.(2024·山东枣庄·一模)地球与月球之间有一
种有趣的“潮汐锁定”现象,即月球永远以同一面朝向着地球。如图所示,太阳光平行照射到地球上,月球绕地球做匀速圆周运动的半径为r。已知地球半径为R,地球表面的重力加速度为g,设从月球上正对地球的P点看向地球的视角为α。在月球绕地球运动一周的过程中,下列说法正确的是()A.地球的密度为334πgR
GB.月球自转的角速度为232πgRrC.太阳光照射月球的时间为32(π)rgR+D.月球上的P点被照亮的时间为32(π)rgR−【题型二】五大热点问题【典例1】(2024·江苏南京·一模)图是神舟十七号载人飞船与天和核心舱对接过程示意图,神舟十七号飞船先在轨道I上做周期为1T的圆周运动,
在A点变轨后,沿椭圆轨道II运动,在B点再次变轨与天和核心舱对接,此后共同在圆轨道III上运行。下列说法正确的是()A.飞船沿轨道II的运行周期小于飞船沿轨道I的运行周期B.飞船在轨道II上经过A点时的加速度大于在轨道I上经过A点时的加速度C.飞船在轨道II上经过B点时
的速度大于在轨道III上经过B点时的速度D.相等时间内,在轨道I上飞船与地心连线扫过的面积小于在轨道III上扫过的面积【典例2】(2024·天津红桥·一模)三颗人造地球卫星A、B、C绕地球做匀速圆周运
动,如图所示,已知ABCmmm=,则对于三颗卫星,正确的是()A.运行线速度大小关系为ABCvvv=B.运行角速度大小关系为ABC=C.向心力大小关系为ABCFFF=D.轨道半径与运行周期
关系为333ABC2C22ABRRRTTT==【典例3】2022年11月29日,神舟十五号载人飞船与中国空间站的核心舱成功交会对接。神舟十五号载人飞船与中国空间站对接前某段时间的运行可简化为在轨道I上的匀速圆周运动,如图所示。神舟十五号飞船绕轨道I运行的周期为1T,中国空间站绕轨道III运
行的周期为2T。在某时刻二者相距最近,下列说法正确的是()A.神舟十五号飞船与中国空间站下一次相距最近需经过时间1212TTtTT=+B.神舟十五号飞船与中国空间站绕地球做匀速圆周运动的轨道半径之比为2312TTC.神舟十五号飞船为了与
中国空间站对接,由轨道I变轨到轨道II时需要减速D.神舟十五号飞船与核心舱对接后的向心加速度小于地球近地卫星的向心加速度【典例4】(2024·湖南长沙·一模)在银河系中,双星系统的数量非常多。研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义
,而且对于了解银河系的形成与和演化,也是一个不可缺少的方面。假设在宇宙中远离其他星体的空间中存在由两个质量分别为4m、m的天体A、B组成的双星系统,二者中心间的距离为L。a、b两点为两天体所在直线与天体B表面的交点,天
体B的半径为5L。已知引力常量为G,则A、B两天体运动的周期和a、b两点处质量为0m的物体(视为质点)所受万有引力大小之差为()A.32π5LGm,0B.32π5LGm,0232536GmmLC.3π5LGm,0D.3π5LGm,0232536GmmL1.(2024·河北·模拟预
测)我国自2004年起启动月球探测工程,2022年10月31日,山东大学牵头完成的世界第一幅1:250万月球全月岩石类型分布图对外公布,该研究成果发表于国际综合性期刊《科学通报》。假设距离月球球心h处的重力加速度g与h的关系图像如图所示,
已知引力常量为G,则()A.距月球表面距离0h处的重力加速度0gB.月球的平均密度为0034gGhC.在距月球表面02h轨道上运行的航天器的速度大小为22ghD.距月球球心012h和032h两位置处的重力加速度大小相等2.(202
4·河北·一模)地球静止同步轨道仅有一个,世界各国的静止同步卫星均在此轨道绕地球做匀速圆周运动,卫星在轨道环绕过程中发生故障或到达使用寿命后便成为“死亡卫星”。在地球静止同步轨道上有一颗北斗导航卫星失效,我国发射
的“实践二十一号”卫星将该失效卫星拖到如图所示的“墓地轨道”,为后续新发射的卫星腾出空间,已知“墓地轨道”比同步轨道高300m,下列说法正确的是()A.地球静止同步轨道可以经过北京正上方B.在“墓地轨道”运动
的卫星的角速度比地球自转的角速度小C.北斗导航卫星在同步轨道上的动能比在“墓地轨道”上的动能小D.北斗导航卫星在同步轨道上的加速度比在“墓地轨道”上的加速度小3.2022年6月5日17时42分,神舟十四号载人飞船与天和核心舱径向端口成功对接。对接后的组合体绕地球做匀速圆周运
动,其轨道离地面高度为地球半径的116。已知地球半径为R,地球表面重力加速度为g。下列说法正确的是()A.神舟十四号与天和核心舱对接时,要先变轨到达核心舱所在的轨道,再加速追上核心舱进行对接B.组合体的向心加速度大
于gC.组合体的线速度小于地球赤道上物体的线速度D.组合体运行的周期为17π1732RTg=4.(2024·云南昆明·三模)《天问》是战国时期诗人屈原创作的一首长诗,全诗问天问地问自然,表现了作者对传统的质
疑和对真理的探索精神。我国探测飞船“天问一号”发射成功飞向火星,屈原的“天问”梦想成为现实,也标志着我国深空探测迈向一个新台阶。如图所示,“天问一号”经过变轨成功进入近火圆轨道,其中轨道1是近火圆轨道,轨道2是椭圆轨道,轨道3是圆轨道。已知火星的质量为
M,火星的半径为R,轨道3的半径为r,“天问一号”质量为m,引力常量为G,下列说法正确的是()A.“天问一号”在轨道3上线速度保持不变B.“天问一号”在轨道2上经过A点时的线速度为GMrC.“天问一号”在轨道2上的周期为23()2rRGM+D.“天问一号”在轨道2上从B点到A点的过程
中,克服引力做功为2()GMmrRR−5.2020年7月23日,我国首次火星探测任务“天问一号”探测器,在中国文昌航天发射场,应用长征五号运载火箭送入地火转移轨道。火星距离地球最远时有4亿公里,最近时大约0.55亿公里。由于距
离遥远,地球与火星之间的信号传输会有长时间的时延。当火星离我们最远时,从地球发出一个指令,约22分钟才能到达火星。为了节省燃料,我们要等火星与地球之间相对位置合适的时候发射探测器。受天体运行规律的影响,这样的发射机会很少。为简化计算,已知火星的公转周期约是地球公转周期的1.
9倍,认为地球和火星在同一平面上、沿同一方向绕太阳做匀速圆周运动,如图所示。根据上述材料,结合所学知识,判断下列说法正确的是()A.当探测器加速后刚离开A处的加速度与速度均比火星在轨时的要大B.当火星离地球最近时,地球上发出的指令需要约10分钟到达火星C.如果火星
运动到B点,地球恰好在A点时发射探测器,那么探测器将沿轨迹AC运动到C点时,恰好与火星相遇D.下一个发射时机需要再等约2.7年6.华盛顿大学的一项新研究表明,某些短周期的双星系统是由恒星演化而产生的。假设太空中有A、B两星体组成的短周期双星,已知A、B环绕连线上的点做匀速圆周运动,A、B的轨道半径
和为1d,A、B的轨道半径差为2d,恒星A、B的半径均远小于1d,且B的质量大于A的质量。求:(1)A、B的线速度之和与A、B的线速度之差的比值;(2)A、B质量之和与A、B质量之差的比值。