【文档说明】江苏省南京市2020届高三第三次模拟考试(6月)数学含答案.docx,共(18)页,211.897 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-11d859f77fb69e50f3328db311b9f94c.html
以下为本文档部分文字说明:
2020届高三模拟考试试卷数学(满分160分,考试时间120分钟)2020.6一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={x|2<x<4},B={x|1<x<3},则A∪B________.2.若z=a1+i+i(i是虚数单位)是实数,则实数a的值为________.
3.某校共有教师300人,男学生1200人,女学生1000人,现用分层抽样从所有师生中抽取一个容量为125的样本,则从男学生中抽取的人数为________.4.如图是一个算法的伪代码,其输出的结果为________.S←
0ForiFrom1To4S←S+iEndForPrintS(第4题)(第6题)5.将甲、乙、丙三人随机排成一行,则甲、乙两人相邻的概率为________.6.已知函数f(x)=2sin(ωx+φ)(其中ω>0,-π2<φ<π2)的部分图象如图所示,则f
(π2)的值为________.7.已知数列{an}为等比数列.若a1=2,且a1,a2,a3-2成等差数列,则{an}的前n项和为________.8.在平面直角坐标系xOy中,已知双曲线x2a2-y2b2=1(
a>0,b>0)的右焦点为F.若以F为圆心,a为半径的圆交该双曲线的一条渐近线于A,B两点,且AB=2b,则该双曲线的离心率为________.9.若正方体ABCDA1B1C1D1的棱长为2,则三棱锥AB1CD1的体积为________.10.已知函数f(x)=x+2,
x≤0,f(-x),x>0,g(x)=f(x-2).若g(x-1)≥1,则实数x的取值范围是________.11.在平面直角坐标系xOy中,A,B是圆O:x2+y2=2上两个动点,且OA→⊥OB→.若A,B两点到直线l:3x+4y-10=0的距离分别为d1,d2,则d1+d2
的最大值为________.12.若对任意a∈[e,+∞)(e为自然对数的底数),不等式x≤eax+b对任意x∈R恒成立,则实数b的取值范围是________.13.已知点P在边长为4的等边三角形ABC内,满足AP→=λAB→+μAC→,且2λ+3μ=1
,延长AP交边BC于点D.若BD=2DC,则PA→·PB→的值为________.14.在△ABC中,∠A=π3,点D是BC的中点.若AD≤22BC,则sinBsinC的最大值为________.二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15.
(本小题满分14分)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,点E,F分别为AD,PB的中点.求证:(1)EF∥平面PCD;(2)平面PAB⊥平面PCD.16.(本小题满分14分)已知向量m=(cos
x,sinx),n=(cosx,-sinx),函数f(x)=m·n+12.(1)若f(x2)=1,x∈(0,π),求tan(x+π4)的值;(2)若f(α)=-110,α∈(π2,3π4),sinβ=7210
,β∈(0,π2),求2α+β的值.17.(本小题满分14分)如图,港口A在港口O的正东100海里处,在北偏东方向有一条直线航道OD,航道和正东方向之间有一片以B为圆心,半径为85海里的圆形暗礁群(在这片海域行船有触礁危险),其中OB=2013海里,tan∠AOB=23,cos
∠AOD=55.现有一艘科考船以105海里/小时的速度从O出发沿OD方向行驶,经过2个小时后,一艘快艇以50海里/小时的速度准备从港口A出发,并沿直线方向行驶与科考船恰好相遇.(1)若快艇立即出发,判断快艇是否有触礁的危险,并说明理由;(2)在无触礁危险的情况下,若快艇再等x小时出
发,求x的最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)经过点(-2,0)和(1,32),椭圆C上三点A,M,B与原点O构成一个平行四边形AMBO.(1)求椭圆C的方程;(2)
若点B是椭圆C左顶点,求点M的坐标;(3)若A,M,B,O四点共圆,求直线AB的斜率.19.(本小题满分16分)已知函数f(x)=exx2-ax+a(a∈R),其中e为自然对数的底数.(1)若a=1,求函数f(x)的单调减区间;(2)若函
数f(x)的定义域为R,且f(2)>f(a),求a的取值范围;(3)求证:对任意a∈(2,4),曲线y=f(x)上有且仅有三个不同的点,在这三点处的切线经过坐标原点.20.(本小题满分16分)若数列{an}满足n≥2,n∈N*
时,an≠0,则称数列anan+1(n∈N*)为{an}的“L数列”.(1)若a1=1,且{an}的“L数列”为12n,求数列{an}的通项公式;(2)若an=n+k-3(k>0),且{an}的“L数列”为递增数列,求k的取值范围;(3)若an=1+pn-1
,其中p>1,记{an}的“L数列”的前n项和为Sn,试判断是否存在等差数列{cn},对任意n∈N*,都有cn<Sn<cn+1成立,并证明你的结论.2020届高三模拟考试试卷(十九)数学附加题(满分40分,考试时间30分钟)21.
【选做题】在A,B,C三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A.(选修42:矩阵与变换)已知矩阵A=1-1a0,a∈R.若点P(1,1)在矩阵A的变换下得到点P′(0,-2).(1)求矩阵A;
(2)求点Q(0,3)经过矩阵A的2次变换后对应点Q′的坐标.B.(选修44:坐标系与参数方程)在平面直角坐标系xOy中,曲线C的参数方程为x=1+cosθ,y=sinθ(θ为参数),直线l的参数方程为x=3t,y=1+t(t为参数),求曲线C上的点到
直线l的距离的最大值.C.(选修45:不等式选讲)已知a,b为非负实数,求证:a3+b3≥ab(a2+b2).【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.如图,在直三棱
柱ABCA1B1C1中,AB⊥AC,AB=3,AC=4,B1C⊥AC1.(1)求AA1的长;(2)试判断在侧棱BB1上是否存在点P,使得直线PC与平面AA1C1C所成角和二面角BA1CA的大小相等,并说明理由.23.口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下
:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n+1(n∈N*)次.若取出白球的累计次数达到n+1时,则终止取球且获奖,其他情况均不获奖.记获奖概率为Pn.(1)求P1;(2)求证:Pn+1<P
n.2020届高三模拟考试试卷(十九)(南京)数学参考答案及评分标准1.{x|1<x<4}2.23.604.105.236.37.2n+1-28.629.8310.[2,4]11.612.[-2,+∞)13.-941
4.3815.证明:(1)取PC的中点G,连结DG,FG.在△PBC中,因为点F,G分别为PB,PC的中点,所以GF∥BC,GF=12BC.因为底面ABCD为矩形,且点E为AD的中点,所以DE∥BC,DE
=12BC,(2分)所以GF∥DE,GF=DE,所以四边形DEFG为平行四边形,所以EF∥DG.(4分)因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.(6分)(2)因为底面ABCD为矩形,所以CD⊥AD.因为平面PAD⊥平
面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.(10分)因为PA⊂平面PAD,所以CD⊥PA.(12分)因为PA⊥PD,PD⊂平面PCD,CD⊂平面PCD,PD∩CD=D,所以PA⊥平面PCD.因为PA⊂平面PAB,所
以平面PAB⊥平面PCD.(14分)16.解:(1)因为向量m=(cosx,sinx),n=(cosx,-sinx),所以f(x)=m·n+12=cos2x-sin2x+12=cos2x+12.(2分)因为f(x2)=1,所以cosx+12=1,即cosx=12.因为x∈(0,π),所以
x=π3,(4分)所以tan(x+π4)=tan(π3+π4)=tanπ3+tanπ41-tanπ3·tanπ4=-2-3.(6分)(2)若f(α)=-110,则cos2α+12=-110,即cos2α=-35.因为α∈(π2,3π4)
,所以2α∈(π,3π2),所以sin2α=-1-cos22α=-45.(8分)因为sinβ=7210,β∈(0,π2),所以cosβ=1-sin2β=210,(10分)所以cos(2α+β)=cos2αcosβ-sin2αsinβ=(-35)×210-(-45)×7210=22.(12分
)因为2α∈(π,3π2),β∈(0,π2),所以2α+β∈(π,2π),所以2α+β的值为7π4.(14分)17.解:如图,以O为原点,正东方向为x轴,正北方向为y轴,建立直角坐标系xOy.因为OB=2013,tan∠AOB=23,
OA=100,所以点B(60,40),且A(100,0).(2分)(1)设快艇立即出发经过t小时后两船相遇于点C,则OC=105(t+2),AC=50t.因为OA=100,cos∠AOD=55,所以AC2=OA2+OC
2-2OA·OC·cos∠AOD,即(50t)2=1002+[105(t+2)]2-2×100×105(t+2)×55.化简得t2=4,解得t1=2,t2=-2(舍去),(4分)所以OC=405.因为cos∠AOD
=55,所以sin∠AOD=255,所以C(40,80),所以直线AC的方程为y=-43(x-100),即4x+3y-400=0.(6分)因为圆心B到直线AC的距离d=|4×60+3×40-400|42+32=8,而圆B的半径r=85,所以d<r,此时
直线AC与圆B相交,所以快艇有触礁的危险.答:若快艇立即出发有触礁的危险.(8分)(2)设快艇所走的直线AE与圆B相切,且与科考船相遇于点E.设直线AE的方程为y=k(x-100),即kx-y-100k=0.因为直线AE与
圆B相切,所以圆心B到直线AC的距离d=|60k-40-100k|12+k2=85,即2k2+5k+2=0,解得k=-2或k=-12.(10分)由(1)可知k=-12舍去.因为cos∠AOD=55,所以tan∠AOD=2,所以直线OD的方程为y=2x
.由y=2x,y=-2(x-100),解得x=50,y=100,所以E(50,100),所以AE=505,OE=505,(12分)此时两船的时间差为505105-50550=5-5,所以x≥5-5-2=3-5
.答:x的最小值为(3-5)小时.(14分)18.解:(1)因为椭圆x2a2+y2b2=1(a>b>0)过点(-2,0)和(1,32),所以a=2,1a2+34b2=1,解得b2=1,所以椭圆C的方程为x24+y2=1.(2分)(2)因为B为左顶点,所以B(-2,0).因为四边形A
MBO为平行四边形,所以AM∥BO,且AM=BO=2.(4分)设点M(x0,y0),则A(x0+2,y0).因为点M,A在椭圆C上,所以x204+y20=1,(x0+2)24+y20=1,解得x0=-1,y0=±32,所以M(-1,±32).(6分)(3)因为直线AB的斜率存在,
所以设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2).由y=kx+m,x24+y2=1,消去y,得(4k2+1)x2+8kmx+4m2-4=0,则有x1+x2=-8km1+4k2,x1x2=4m2-41+4k2.(8分)因为平行四边形AMBO,所以O
M→=OA→+OB→=(x1+x2,y1+y2).因为x1+x2=-8km1+4k2,所以y1+y2=k(x1+x2)+2m=k·-8km1+4k2+2m=2m1+4k2,所以M(-8km1+4k2,2m1+4k2).(10分)因为点M在椭圆C上,所以将点M的坐标代入椭圆C的方
程,化简得4m2=4k2+1①.(12分)因为A,M,B,O四点共圆,所以平行四边形AMBO是矩形,且OA⊥OB,所以OA→·OB→=x1x2+y1y2=0.因为y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=m2-4k21+4
k2,所以x1x2+y1y2=4m2-41+4k2+m2-4k21+4k2=0,化简得5m2=4k2+4②.(14分)由①②解得k2=114,m2=3,此时Δ>0,因此k=±112.所以所求直线AB的斜率为±112.(16分)19.(1)
解:当a=1时,f(x)=exx2-x+1,所以函数f(x)的定义域为R,f′(x)=ex(x-1)(x-2)(x2-x+1)2.令f′(x)<0,解得1<x<2,所以函数f(x)的单调减区间为(1,2).(2分)(2)解:由函
数f(x)的定义域为R,得x2-ax+a≠0恒成立,所以a2-4a<0,解得0<a<4.(4分)(解法1)由f(x)=exx2-ax+a,得f′(x)=ex(x-a)(x-2)(x2-ax+a)2.①当a
=2时,f(2)=f(a),不符题意.②当0<a<2时,因为当a<x<2时,f′(x)<0,所以f(x)在(a,2)上单调递减,所以f(a)>f(2),不符题意.(6分)③当2<a<4时,因为当2<x<a
时,f′(x)<0,所以f(x)在(2,a)上单调递减,所以f(a)<f(2),满足题意.综上,a的取值范围是(2,4).(8分)(解法2)由f(2)>f(a),得e24-a>eaa.因为0<a<4,所以不等式可化为e2>eaa(4-a).设函数g(x)=exx(4
-x)-e2,0<x<4.(6分)因为g′(x)=ex·-(x-2)2x2≤0恒成立,所以g(x)在(0,4)上单调递减.因为g(2)=0,所以g(x)<0的解集为(2,4).所以a的取值范围是(2,4).(8分)(3)证明:设切点为(x0,f(x0)),则f′(x0)=e
x0(x0-2)(x0-a)(x20-ax0+a)2,所以切线的方程为y-ex0x20-ax0+a=ex0(x0-2)(x0-a)(x20-ax0+a)2×(x-x0).由0-ex0x20-ax0+a=ex0(x0-2)(x0-a)(x2
0-ax0+a)2×(0-x0),化简得x30-(a+3)x20+3ax0-a=0.(10分)设h(x)=x3-(a+3)x2+3ax-a,a∈(2,4),则只要证明函数h(x)有且仅有三个不同的零点.由(2)可知a∈(2,4)时,函数h(x)
的定义域为R,h′(x)=3x2-2(a+3)x+3a.因为Δ=4(a+3)2-36a=4(a-32)2+27>0恒成立,所以h′(x)=0有两不相等的实数根x1和x2,不妨设x1<x2.列表如下:x(-∞,x1)x1(
x1,x2)x2(x2,+∞)h′(x)+0-0+h(x)增极大减极小增所以函数h(x)最多有三个零点.(12分)因为a∈(2,4),所以h(0)=-a<0,h(1)=a-2>0,h(2)=a-4<0,h(5)=50-11a>0,所以h(0)h(1)<0,h(1)h(
2)<0,h(2)h(5)<0.因为函数的图象不间断,所以函数h(x)在(0,1),(1,2),(2,5)上分别至少有一个零点.综上所述,函数h(x)有且仅有三个零点.(16分)20.解:(1)因为{an}的“L数列”为{12n},所
以anan+1=12n,n∈N*,即an+1an=2n,所以n≥2时,an=anan-1·an-1an-2·…·a2a1·a1=2n-1·2n-2·…·2·1=2(n-1)+(n-2)+…+1=2n(n-1)2.又a1=1符合上式,所以{an}的通项公式为an=2n(n-
1)2,n∈N*.(2分)(2)因为an=n+k-3(k>0),且n≥2,n∈N*时,an≠0,所以k≠1.(解法1)设bn=anan+1,n∈N*,所以bn=n+k-3(n+1)+k-3=1-1n+k-2.因为{bn}为递增数列,所以bn+1-bn>0对n∈N*恒成立,即1
n+k-2-1n+k-1>0对n∈N*恒成立.(4分)因为1n+k-2-1n+k-1=1(n+k-2)(n+k-1),所以1n+k-2-1n+k-1>0等价于(n+k-2)(n+k-1)>0.当0<k<1时,因为n=1时,(n+k-2)(n+k-1)<0,不符合题意.(6分)当k>1
时,n+k-1>n+k-2>0,所以(n+k-2)(n+k-1)>0.综上,k的取值范围是(1,+∞).(8分)(解法2)令f(x)=1-1x+k-2,所以f(x)在区间(-∞,2-k)和区间(2-k,+∞)上单调递增.当0<k<1时,f
(1)=1-1k-1>1,f(2)=1-1k<1,所以b2<b1,不符合题意.(6分)当k>1时,因为2-k<1,所以f(x)在[1,+∞)上单调递增,所以{bn}单调递增,符合题意.综上,k的取值范围是(1,+∞).(8分)(3)存在满足条
件的等差数列{cn},证明如下:因为akak+1=1+pk-11+pk=1p+1-1p1+pk,k∈N*,(10分)所以Sn=np+(1-1p)·(11+p+11+p2+…+11+pn-1+11+pn).因为p>1,所以1-1p>0,所以np<Sn<np+(1-1p)·(1p+1p2+…
+1pn-1+1pn),即np<Sn<np+1p·[1-(1p)n].(14分)因为1p·[1-(1p)n]<1p,所以np<Sn<n+1p.设cn=np,则cn+1-cn=n+1p-np=1p,且cn<Sn<cn+1,所以存在等差数列{cn}满足题意.(16分)2
020届高三模拟考试试卷(南京)数学附加题参考答案及评分标准21.A.解:(1)1-1a011=0a.(2分)因为点P(1,1)在矩阵A的变换下得到点P′(0,-2),所以a=-2,所以
A=1-1-20.(4分)(2)因为A=1-1-20,所以A2=1-1-201-1-20=3-1-22,(6分)所以A203=3-1-22
03=-36,所以点Q′的坐标为(-3,6).(10分)B.解:由直线l的参数方程x=3t,y=1+t(t为参数),得直线l的方程为x-3y+3=0.(2分)曲线C上的点到直线l的距离d=|1+cosθ-3sinθ+3|2(4分)=2cos
(θ+π3)+1+32.(6分)当θ+π3=2kπ,即θ=-π3+2kπ(k∈Z)时,(8分)曲线C上的点到直线l的距离取最大值3+32.(10分)C.证明:因为a,b为非负实数,所以a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].
(4分)若a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)·[(a)5-(b)5]≥0.(6分)若a<b时,a<b,从而(a)5<(b)5,得(a-b)·[(a)5-(b)5]>0.(8分)综上,
a3+b3≥ab(a2+b2).(10分)22.解:(1)因为三棱柱ABCA1B1C1为直三棱柱,所以AA1⊥平面ABC,所以AA1⊥AB,AA1⊥AC.又AB⊥AC,所以以{AB→,AC→,AA1→}为正交基底建立如图所示的空间直角坐标系Axyz.设
AA1=t(t>0),又AB=3,AC=4,则A(0,0,0),C1(0,4,t),B1(3,0,t),C(0,4,0),所以AC1→=(0,4,t),B1C→=(-3,4,-t).(2分)因为B1C⊥AC1,所以B1C→·AC1→=0,即16-t2=0,解得t=4,所以AA1的长为4
.(4分)(2)由(1)知B(3,0,0),C(0,4,0),A1(0,0,4),所以A1C→=(0,4,-4),BC→=(-3,4,0).设n=(x,y,z)为平面A1CB的法向量,则n·A1C→=0,
n·BC→=0,即4y-4z=0,-3x+4y=0.取y=3,解得z=3,x=4,所以n=(4,3,3)为平面A1CB的一个法向量.因为AB⊥平面AA1C1C,所以AB→=(3,0,0)为平面A1CA的一
个法向量,则cos〈n,AB→〉=AB→·n|AB→|·|n|=123×42+32+32=434,(6分)所以sin〈n,AB→〉=317.设P(3,0,m),其中0≤m≤4,则CP→=(3,-4,m).因为AB→=(3,0,0)为平面A1CA的一个法向量,所以cos〈CP→,AB→〉=AB→·
CP→|AB→|·|CP→|=93·32+(-4)2+m2=3m2+25,所以直线PC与平面AA1C1C所成角的正弦值为3m2+25.(8分)因为直线PC与平面AA1C1C所成角和二面角BA1CA的大小相等,所以3m2+2
5=317,此时方程无解,所以侧棱BB1上不存在点P,使得直线PC与平面AA1C1C所成角和二面角BA1CA的大小相等.(10分)23.(1)解:根据题意,每次取出的球是白球的概率为25,取出的球是黑球的概率为35,所以P1=25×25+C12×(25)2×35=4
25+24125=44125.(2分)(2)证明:累计取出白球次数是n+1的情况有:前n次取出n次白球,第n+1次取出的是白球,概率为Cnn×(25)n+1;前n+1次取出n次白球,第n+2次取出的是白球,概率为Cnn+1×(25)n+1×35;(4分)……前2n-1次取出n次白球
,第2n次取出的是白球,概率为Cn2n-1×(25)n+1×(35)n-1;前2n次取出n次白球,第2n+1次取出的是白球,概率为Cn2n×(25)n+1×(35)n;则Pn=Cnn×(25)n+1+Cnn+1×(25)n+1×35+…+Cn2n-1×(25)n+1×(35)
n-1+Cn2n×(25)n+1×(35)n=(25)n+1×[Cnn+Cnn+1×35+…+Cn2n-1×(35)n-1+Cn2n×(35)n]=(25)n+1×[C0n+C1n+1×35+…+Cn-12n-1×(35)n-1+Cn2n×(35
)n],(6分)因此Pn+1-Pn=(25)n+2×[C0n+1+C1n+2×35+…+Cn2n+1×(35)n+Cn+12n+2×(35)n+1]-(25)n+1×[C0n+C1n+1×35+…+Cn-12n-1×(
35)n-1+Cn2n×(35)n]=(25)n+1×{25×[C0n+1+C1n+2×35+…+Cn2n+1×(35)n+Cn+12n+2×(35)n+1]-[C0n+C1n+1×35+…+Cn-12n-1×(35)n-1+Cn2n×(35)n]}=(25)n+1×{(1-35)×[C0n
+1+C1n+2×35+…+Cn2n+1×(35)n+Cn+12n+2×(35)n+1]-[C0n+C1n+1×35+…+Cn-12n-1×(35)n-1+Cn2n×(35)n]}=(25)n+1×{[C0n+1+C1n+2×35+…+Cn2n+1×(
35)n+Cn+12n+2×(35)n+1]-[C0n+1×35+C1n+2×(35)2+…+Cn2n+1×(35)n+1+Cn+12n+2×(35)n+2]-[C0n+C1n+1×35+…+Cn-12n-1×(35)n-1+Cn2n×(35)n]}(8分)=(25)n+1×{[C0n+1+C1
n+2×35+…+Cn2n+1×(35)n+Cn+12n+2×(35)n+1]-[C0n+C1n+2×35+…+Cn2n+1×(35)n+Cn2n+1×(35)n+1+Cn+12n+2×(35)n+2]},则Pn+1-Pn=(25)n+1×[Cn+1
2n+2×(35)n+1-Cn2n+1×(35)n+1-Cn+12n+2×(35)n+2]=(25)n+1×(35)n+1×(Cn+12n+2-Cn2n+1-35Cn+12n+2)=(25)n+1×(35)n+1×(Cn+12n+1-35Cn+12n+2).因为Cn+12
n+1-35Cn+12n+2=Cn+12n+1-35(Cn+12n+1+Cn2n+1)=25Cn+12n+1-35Cn2n+1=-15Cn2n+1,所以Pn+1-Pn=(25)n+1×(35)n+1×(-15)×Cn2n+1<0,因此Pn+1<Pn.(10分)