【文档说明】湖北省黄冈市2024届高三上学期9月调研考试+数学+PDF版含答案.pdf,共(6)页,1.219 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-0ffdf04278ace030376583946f230271.html
以下为本文档部分文字说明:
{#{QQABRQKEogiAAhBAAAhCAQUyCgEQkBGACCoOgFAEIAAAwRFABCA=}#}{#{QQABRQKEogiAAhBAAAhCAQUyCgEQkBGACCoOgFAEIAAAwRFABCA=}#}1黄冈市2023年高三9月调考
数学答案1.D2.A3.C4.A5.A6.D7.D8.C9.CD10.ABC11.ABD12.BCD13.4314.,515.2182716.22ln2,17.(1)依题意有3,1,25)(221121
aaaaa又}{na为等差数列,∴d=2,∴an=2n-1.…………5分(2)由(1)可得).)2(11(41)2(1.22222nnnnnbnSnn),5131(41),4121(41),3111(4122322221bbb).)1(1)1(1(41221
nnbn,.1654541))2(1)1(1411(4122nnTn…………10分18.(1)∵点(1,f(1))在切线x-y+1=0上,,23)1(baf①,123)1(,23)(2bafbaxxxf②联立①②解得a=1,
b=0.…………5分(2)依题意有,023)1(,23)(2bafbaxxxfb=2a-3,且.3,0)96(4)32(12422aaaaa.322)(2axaxxxxf
.2222))((2232xaxxxaxxxf则3,2x时,02223axx,即.32.2223xxxa令.32,22)(23xxxxg042)(3xxg,.27)2()(mingxga又,3a∴a
的取值范围为2733,,…………12分{#{QQABRQKEogiAAhBAAAhCAQUyCgEQkBGACCoOgFAEIAAAwRFABCA=}#}219.(1)2()22(1)(2).f
xabbxaxxaxab,abR∴f(x)>0的解集等价于0)2)(1(aabxx的解集.当12aab即ab时不等式的解集为1,2aab当12aab即ab时不等式的解集为
当12aab即ab时不等式的解集为aab21,…………5分(2).2)0(,0)1(baff对称轴为.0abx若f(x)在0,2上的最小值为a-2b,12.20,0
)0(abbaababf,∴.1ab…………12分20.(1))3)sin(3cos(422)6)cos(3cos(42)(xxxxxfba).232sin(2)232
2sin(2xx若f(x)的图象关于点)012(,对称,则.kk,k12262236,).62sin(212x)x(f,若,23=tanx则.
712cos,734tan1tan2cossincossin22sin222xxxxxxxx同理可得.71114113342)6sin2cos6cos2(sin2)62sin(2)(xxxxf………
…6分{#{QQABRQKEogiAAhBAAAhCAQUyCgEQkBGACCoOgFAEIAAAwRFABCA=}#}3(2)若函数g(x)的图象与f(x)的图象关于直线8x对称,则).32sin(
2)6)4(2sin(2)4()(xxxfxg.167sin2)125(gg(x)在5π,12t上的值域为1,2,.1)32sin(22x且.1)125(g结合函数g(x)的图象知.6
322t412tt的取值范围为.412,…………12分21.(1)在△ABC中,,hcba若.3hc.12212)(22)(2cos22222222abc
hhabchcababcbaabcbaC.sin,21sin21CchabchCab又.672122sincos12chchchhCC.762tan2cos22cos2sin22CCCC.138449361762tanC……
……6分(2)由(1)知.2tan121Cch如图,在△ABC中,过B作AB的垂线EB,且使EB=2h,则CE=CB=a,.320,4)(,422222chhchchcba.12tan43,342tan11CC2tan2tan122tan12tan
2sin2CCCCC,.1sin2524C…………12分BDCE2hhaaAbc{#{QQABRQKEogiAAhBAAAhCAQUyCgEQkBGACCoOgFAEIAAAwRFABCA=}#}422.(1)xaxxxf2)(2,0
x,.44a令axxxg2)(2①当0即1a时,,0)(xf)(xf单调递增,无极值点;②当0即1a时,函数g(x)有两个零点,11,1121axax(i)当0a时,1,
021xx递减,时当)(,0)(),0(2xfxfxx,0)(),(2xfxx时当)(xf单调递增,)(xf有一个极小值点;(ii)当10a时,1,1021xx递增,时与当)(,
0)(),2(),0(1xfxfxxx,0)(),(21xfxxx时当)(xf单调递减,)(xf有两个极值点.综上:当1a时)(xf无极值点;当10a时)(xf有两个极值点;当0a时)(xf有一个极小值点.
…………5分(2)不等式)212e()(2xxxxfx恒成立,即.1e)(lnxxxxa.01ln,0,e.01elnetatttxxaxxxx令,1ln)(ttth令,)(tatth,0)()1,0(,0)1()(,0)(,0
ththththa时单调递增,又时当.0a不合题意,当0<t<a时,h(t)单调递减,当t>a时h(t)单调递增,.1ln)()(minaaaahth而h(1)=0,.01ln)(aaa
ah令,ln)(,1ln)(xxmxxxxm当)1,0(x时m(x)单调递增,当),1(x时m(x)单调递减,0)1()(minmxm,即.01ln)(aaaah.01ln)(
aaaah∴a=1.…………12分{#{QQABRQKEogiAAhBAAAhCAQUyCgEQkBGACCoOgFAEIAAAwRFABCA=}#}