2021-2022学年高中数学人教版必修2教案:2.3.1直线与平面垂直的判定 1 含解析【高考】

DOC
  • 阅读 0 次
  • 下载 0 次
  • 页数 7 页
  • 大小 408.000 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021-2022学年高中数学人教版必修2教案:2.3.1直线与平面垂直的判定 1 含解析【高考】
可在后台配置第一页与第二页中间广告代码
2021-2022学年高中数学人教版必修2教案:2.3.1直线与平面垂直的判定 1 含解析【高考】
可在后台配置第二页与第三页中间广告代码
2021-2022学年高中数学人教版必修2教案:2.3.1直线与平面垂直的判定 1 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有0人购买 付费阅读2.40 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021-2022学年高中数学人教版必修2教案:2.3.1直线与平面垂直的判定 1 含解析【高考】.doc,共(7)页,408.000 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-0a36ba8eb0ac10a52296071df4ec2319.html

以下为本文档部分文字说明:

-1-第一课时直线与平面垂直的判定(一)教学目标1.知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法(1)通过教学活动,使学生了解,感受直

线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.(二)教学重点、难点重点:(1)直线与平面垂直的定义和判定定理;(2)直线

和平面所成的角.难点:直线与平面垂直判定定理的探究.教学过程教学内容师生互动设计意图新课导入问题:直线和平面平行的判定方法有几种?师投影问题,学生回答.生:可用定义可判断,也可依判定定理判断.复习巩固探索新知一、

直线和平面垂直的定义、画法如果直线l与平面内的任意一条直线都垂直,我们说直线l与平面互相垂直,记作l⊥.直线l叫做平面的垂线,平面叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.师:日常生活中我们对直线与平面垂直有

很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置关系如何?生:旗杆与地面内任意一培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结-2-画直线与平面垂直时,通常把直线画成与表

不平面的平行四边形的一边垂直,如图.条经B的直线垂直.师:那么旗杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?(图)生:垂直,依据是异面直线垂直的定义.师:你能尝试给线面垂直下定义吗?……师:能否将任意直线改为无

数条直线?学生找一反例说明.论.探索新知二、直线和平面垂直的判定1.试验如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面垂直

?2.直线与平面垂直的判定定理:一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直.思考:能否将直线与平面垂师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).学生动手实验,然后回答问题.生:当且仅当折痕AD是BC边

上的高时,AD所在直线与桌面所在平面垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD……培养学

生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.-3-直的判定定理中的“两条相交直线”改为一条直线或两条平行直线?师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化

的数学思想.典例剖析例1如图,已知a∥b,a⊥,求证:b⊥.证明:在平面内作两条相交直线m、n.因为直线a⊥,根据直线与平面垂直的定义知a⊥m,a⊥n.又因为b∥a,所以b⊥m,b⊥n.又因为,mn,m、n是两条相交直线,b⊥.师:要证b⊥,需证

b与内任意一条直线的垂直,又a∥b,问题转化为a与面内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明过程.……师:此结论可以直接利用,判定直线和平面垂直.巩固所知识培养学生转化化归能力、书写表达能力.探索新知二、直线和平面所成的角如图,一条直线P

A和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A叫做斜足.过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提

高上课效率.-4-的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.典例剖析例2如图,在正方体ABCD–A1B1C1D1中,求A1B和平面A1

B1CD所成的角.分析:找出直线A1B在平面A1B1CD内的射影,就可以求出A1B和平面A1B1CD所成的角.解:连结BC1交B1C于点O,连结A1O.设正方体的棱长为a,因为A1B1⊥B1C1,A1B1⊥B1B,所以A1B1⊥平面BCC1B1.所以A1B1

⊥BC1.又因为BC1⊥B1C,所以B1C⊥平面A1B1CD.所以A1O为斜线A1B在平面A1B1CD内的射影,∠BA1O为A1B与平面A1B1CD所成的角.在Rt△A1BO中,12ABa=,22BOa=,师:此题A1是斜足,要求直线A1B与平面A1B1CD

所成的角,关键在于过B点作出(找到,面A1B1CD的垂线,作出(找到)了面A1B1CD的垂线,直线A1B在平面A1B1CD内的射影就知道了,怎样过B作平面A1B1CD的垂线呢?生:连结BC1即可.师:能证明吗?学生分析,教师板书,共同完成求解过程.点拔关键点,突

破难点,示范书写及解题步骤.-5-所以112BOAB=,∠BA1O=30°因此,直线A1B和平面A1B1CD所成的角为30°.随堂练习1.如图,在三棱锥V–ABC中,VA=VC,AB=BC,求证:VB⊥AC.2.过△ABC所在平面外一点P,作PO⊥,垂足为O,连接PA,PB,

PC.(1)若PA=PB=PC,∠C=90°,则点O是AB边的心.(2)若PA=PB=PC,则点O是△ABC的心.(3)若PA⊥PB,PB⊥PC,PB⊥PA,则点O是△ABC的.心.3.两条直线和一个平面所成

的角相等,这两条直线一定平行吗?4.如图,直四棱柱A′B′C′D′–ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A′C⊥B′D′?学生独立完成答案:1.略2.(1)AB边的中点;(2)点O是△ABC的外心;(3)点O是△ABC的

垂心.3.不一定平行.4.AC⊥BD.巩固所学知识-6-归纳总结1.直线和平面垂直的定义判定2.直线和平面所成的角定义与解答步骤、完善.3.线线垂直线面垂直学生归纳总结教师补充巩固学习成果,使学生逐步养成爱总结,会总结

的习惯和能力.课后作业2.7第一课时习案学生独立完成强化知识提升能力备选例题例1如图,在空间四边形ABCD中,AB=AD,CB=CD,M为BD中点,作AO⊥MC,交MC于O.求证:AO⊥平面BCD.【解析】连

结AM∵AB=AD,CB=CD,M为BD中点.∴BD⊥AM,BD⊥CM.又AM∩CM=M,∴BD⊥平面ACM.∵AO平面ACM,∴BD⊥AO.又MC⊥AO,BD∩MC=M,∴AO⊥平面貌BCD.【评析】本题为了证明AO

⊥平面BCD,先证明了平面BCD内的直线垂直于AO所在的平面.这一方法具有典型性,即为了证明线与面的垂直,需要转化为线与线的垂直;为了解决线与线的垂直,又需转化为另一个线与面的垂直,再化为新的线线垂直.这样互相转化,螺旋式往复,最终使问题得到解决.

例2已知棱长为1的正方体ABCD–A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成的角的正弦值.【解析】取CD的中点F,连接EF交平面ABC1D1于O,连AO.≠≠-7-由已知正方体,易知EO⊥ABC1D1,所以∠EA

O为所求.在Rt△EOA中,1112222EOEFAD===,2215()122AE=+=,sin∠EAO=105EOAE=.所以直线AE与平面ABC1D1所成的角的正弦值为105.【评析】求直线和平面所成角的步骤:(1)作——作出斜线和平面所成的角;(2)证—

—证明所作或找到的角就是所求的角;(3)求——常用解三角形的方法(通常是解由垂线、斜线、射影所组成的直角形)(4)答.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?