【文档说明】辽宁省沈阳市2021届高三下学期质量监测(一)数学试题 答案.pdf,共(6)页,145.664 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-03231e0cce31f66b5191696bdb8afc1a.html
以下为本文档部分文字说明:
1.D2.D3.C4.B5.A6.D7.B8.A9.ABD10.BCD11.ABD12.ACD13.1014.7915.0,316.1,2217.解:选择①⑴3cossincossincossinsinA
CBBCAAtan3A又,0A3A⑵2222cosabcbcA224bcbc即234bcbc36bc2bc1133sin22222SbcA选择②⑴2cos2bcCa22222
2abcbcaba222bcabc即22222bcabcbcbc1cos,23AA⑵2222cosabcbcA224bcbc即234bcbc36bc2bc11
33sin22222SbcA选择③tantantantantantantantantantantantantan1tantanBCABCBCBCBCBCBCBC
tantan1tantan1tantantantantantantantan1tantan1tantanBCBCBCBCBCABCBCBC
又tantantan3tantanABCBC3tan,3AA⑵2222cosabcbcA224bcbc即234bcbc36bc2bc1133sin22222SbcA18.⑴1221nnaSn①2212
2nnaSn②②①得,22211nnaana为正项数列212111nnnnaaaa*nN22211123,12,222nnaaSSa12211,2,1aaaana是
以第一项开始的等差数列nan*nN⑵由⑴知2nnbn123121222322nnnTbbbn①234121222322nnTn②①②得123112121
2122nnnTn化简得1122nnTn0nnbT是递增数列11222021nn解得7n2021nT的最小的正整数为719.⑴性别器械类徒手类合计男生5906065
0女生310240550合计9003001200222120059024060310121230415129001886.63590030065055039655532175K
所以,有99%把握认为“是否选择物理类与性别有关”.⑵可取的值为0,1,2,3.2431=0=11=5480P2124343311111545448PC
21243343332115445480PC4339354420P故的分布列为:01
23P18018338092011339230123808802010E20.(1)证明:平面ADE平面ABCD,平面ADEABCD=AD,ADAB,AB平面ADE,又DF平面ADE,DFAB;ABCD为正方形,CDAD,又DECD,DEAD
,ADE为等腰三角形,且E为AE中点,AEDF.又AABAE,DF平面ADE,且DF平面DFG,平面DFG平面ABE.(2)解:以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,)0,0,2(A)0,2,2
(B,)0,2,0(C,)0,0,0(D)2,0,0(E,)1,0,1(F,),,(110H)2,0,0(DE,)1,0,1(DF,)1,1,0(DH.G在棱BC上,设),,(02G),(]10[,则)1,1,(
GH,直线GH与ABCD平面所成角的正切值为22,正弦值为33,易得平面ABCD的一个法向量为DE,|,cos|DEGH|||||,|DEGHDEGH|2112|233,解的1.)0,2,1(G,)0,2,1(DG,设平
面DGF的法向量),,(zyxm,002zxmDFyxmDG,令1x,得),,(121m,同理可得平面DGH的法向量),,(221n,nm,cos||||nmnm36366
.锐二面角HDGF的余弦值为66.21.解析:(1)设点11,Mxy,22,Nxy,00,Gxy将,MN带入椭圆方程:2211213xya①2222213xya②①-②:121212
1223xxxxyyyya整理得:23OGkka34OGkk24a椭圆方程为:22143xy(2)设直线MN的方程:ykxm22143xyykxm联立得:2223484120kxkmxm
1228,34kmxxk212241234mxxk222211xyxykkPNPM,即)2)(2(41))((212121xxmkxmkxyy,044))(24()14(221212
mxxkmxxk,即044)348)(24(34124)14(22222mkkmkmkmk;整理得:0))(2(222mkmkmkmk,)0,2(P不在直线MN上,即02km,km;F在以MN为直径的圆内,0)2)(2(41
)1)(1()1)(1(21212121xxxxyyxxFNFM;即034362834)8(234)124(3)(23222222121kkkkmkmxxxx,解得:)773,773(k,又0k,)773,0()0,773(
k22.(1)由题知()fx定义域为()0+¥,,求导()()'ln1,fxax=+令()'10,,fxxe==当0a>时,10,xe<<()'0,fx<1,xe>()'0,fx>当0a<时,10,xe<<()
'0,fx>1,xe>()'0,fx<综上,当0a>时,()fx在10e,上单调递减,在1e+¥,上单调递增;当0a<时,()fx在10e,上单调递增,在1e+¥,上单调递减.(2)由题得22ln1axxxxe-£-,0x>,可得12ln0xaxxe+--³在()0+¥,上恒成立;令(
)12ln,pxxaxxe=+--()2'22111,axaxpxxxx--=--=令21,yxax=--2=40,aD+>故有两个零点且121,xx=-即12xx,一正一负.设10,x>则21110,xax--=001;axx=-()px在()10,x上为单调减函数,在()1+x¥,上
单调递增.而()0px³,则()()1000min00112ln0,pxpxxxxxxe==+---³令()112ln,qxxxxxxe=+---()'211ln,qxxx=-+()0,1,xÎ()'0;qx>()
1,xÎ+¥,()'0;qx<又()10,qqee==则()0,qx³01,xeeÎ,而001axx=-在1,ee上单调递增,则1100,aeeeeÎ--,.