【文档说明】山东省枣庄滕州市2020-2021学年高一下学期期中质量检测数学试卷答案.pdf,共(6)页,123.120 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-019bce1ff130788d33d2cc029e2c0eaf.html
以下为本文档部分文字说明:
高一数学参考答案第1页共6页2020~2021学年度第二学期期中质量检测高一数学试题参考答案及评分标准一、单项选择题(每小题5分,共40分)题号12345678答案ACDDAABB二、多项选择题(每小题5分
,共20分)9.BD10.BC11.ACD12.ABC三、填空题(每小题5分,共20分)13.1214.61π15.816.202四、解答题(共70分)(注意:答案仅提供一种解法,学生的其他正确解法应依据本评分标准,酌情赋分.)17.(本小题
满分10分)解:(Ⅰ)当z为实数时,则22150,mm.................................................................2分解得:3m或5m.所以:当3m或5m
时,z为实数.........................................................5分(Ⅱ)当z为纯虚数时,则229200,2150.mmmm............................................
..................7分解得4m.所以:当4m时,z为纯虚数.........................................................................10分18.(本小题满分12分)解:(Ⅰ)因
为22(2)()224=3ababaabbab,所以1ab=................................................................................................
........2分高一数学参考答案第2页共6页2||ab222()21247ababab,...................................4分故||ab7.............
......................................................................................6分(Ⅱ)设向量a与ab的夹角为,27||||7()112cos177
ababbaaaa.............................................12分19.(本小题满分12分)解:(Ⅰ)因为cossin2AbaB,由正弦定理可得sincos
sinsin2ABAB,..........1分又(0,π)B,故sin0B,所以cossin2AA.............................................................................
................2分即cos2sincos222AAA,又(0,π)A,故π(0,)22A,所以cos02A,所以1sin22A....................................................................
................................4分又π(0,)22A,所以π26A,故π3A.......................................................................
........................................6分(Ⅱ)若选择①,由余弦定理得:2222()3abcbcbcbc,所以16253bc,3bc..................
...........................................................9分所以11333sin32224ABCSbcA△............................................
..12分若选择②,由余弦定理得:222216431633abcbcbb,高一数学参考答案第3页共6页整理得:24332033bb,解得:833b,或433b(舍去).........
...............................................9分所以118343383sin223323ABCSbcA△...........................12分若选择③,则180756045B,
由正弦定理得:sin60sin45ab,所以sin4546sin603ab.................................................................................9分1146
sin4sin(4530)223ABCSabC△14662124342343.............................................12分20.(本小题满分12分)解:(Ⅰ)圆锥SO的母线长:22345l,圆锥SO的侧面积:π
3515πS.....................................................3分圆锥SO的体积:21π3412π3V...................................
.............6分(Ⅱ)设圆锥SO的内接圆柱OO的底面半径为r,则hRrHR,即343hr,解得:334hr.........................................................
..................................8分高一数学参考答案第4页共6页内接圆柱OO的侧面积:32π2π(3)4hSrhh23π(4)2hh(04)h...................10分当2h时,S有最大值6π
.所以:当2h时,圆柱侧面积的最大值为6π.......................................12分21.(本小题满分12分)解:(Ⅰ)由图形可知1122BEBAAEABA
Dab................................4分(Ⅱ)25AOAF..............................................
.............................................................5分证明:设AOAF,由于1122AFADDFADABa
b,故12AOab............................................................................................7分设EOEB,由(Ⅰ)知:12EB
ab,故EO12ab...........................................................................................9分在AOE△中,AOAEEO...
.................................................................10分即1111(1)2222abbabab.则1,21(
1).2解得:25.即25AOAF.......................................................................
...........................12分高一数学参考答案第5页共6页22(本小题满分12分)解:(Ⅰ)在ABC△中,因为2BC,π3ABC,133sin22ABCSABBCABC
△,所以33322AB,解得:3AB.........................................................................................................2分在ABC△中,由余弦定理得:2222
cos7ACABBCABBCABC,所以7AC....................................................................................................
....4分(Ⅱ)设ACD,则ππ44ACBACD.如图,在RtACD△中,因为3AD,所以3sinsinADAC.........................................................................
.............7分在ABC△中,5ππ12BACACBABC,由正弦定理,得sinsinBCACBACABC,即225πsinsin()12,所以5πsin()sin12,................
....................................................................10分又π(0,)2,5π5ππ012122,高一数学参考答案第6页共6页所以5π12.所以5π24,即5π24ACD......
...............................................................................................12分