【文档说明】山东省枣庄滕州市2020-2021学年高一下学期期中质量检测数学试卷答案.pdf,共(6)页,123.120 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-019bce1ff130788d33d2cc029e2c0eaf.html
以下为本文档部分文字说明:
高一数学参考答案第1页共6页2020~2021学年度第二学期期中质量检测高一数学试题参考答案及评分标准一、单项选择题(每小题5分,共40分)题号12345678答案ACDDAABB二、多项选择题(每小题5分,共20分)9.BD10.BC11.ACD12
.ABC三、填空题(每小题5分,共20分)13.1214.61π15.816.202四、解答题(共70分)(注意:答案仅提供一种解法,学生的其他正确解法应依据本评分标准,酌情赋分.)17.(本小题满分10分)解:(Ⅰ)当z为实数时,则22150,mm.............
....................................................2分解得:3m或5m.所以:当3m或5m时,z为实数.............................
............................5分(Ⅱ)当z为纯虚数时,则229200,2150.mmmm...................................................
...........7分解得4m.所以:当4m时,z为纯虚数.........................................................................10分18.(本小题满分12分)解:(Ⅰ)因为22(2)()224=3
ababaabbab,所以1ab=........................................................................................................
2分高一数学参考答案第2页共6页2||ab222()21247ababab,...................................4分故||ab7...........................
........................................................................6分(Ⅱ)设向量a与ab的夹角为,27||||7()112cos177
ababbaaaa.............................................12分19.(本小题满分12分)解:(Ⅰ)因为cossin2AbaB,由正弦定理可得sinco
ssinsin2ABAB,..........1分又(0,π)B,故sin0B,所以cossin2AA..............................................
...............................................2分即cos2sincos222AAA,又(0,π)A,故π(0,)22A,所以cos02A,所以1sin22A............................
........................................................................4分又π(0,)22A,所以π26A,故π3A..................
.............................................................................................6分(Ⅱ)若选择①,由余弦定理得:2222()3abc
bcbcbc,所以16253bc,3bc.............................................................................9分所以11333sin32224ABCSbcA△..........
....................................12分若选择②,由余弦定理得:222216431633abcbcbb,高一数学参考答案第3页共6页整理得:24332033bb,解得:833b,或433b(舍去)....
....................................................9分所以118343383sin223323ABCSbcA△...........................12分若选择③,则180756045
B,由正弦定理得:sin60sin45ab,所以sin4546sin603ab.................................................................................9分1146sin4sin(4530)
223ABCSabC△14662124342343.............................................12分20.(本小题满分12分)解:(Ⅰ)圆锥SO的母线长:22345l,圆
锥SO的侧面积:π3515πS.....................................................3分圆锥SO的体积:21π3412π3V............................
....................6分(Ⅱ)设圆锥SO的内接圆柱OO的底面半径为r,则hRrHR,即343hr,解得:334hr..................................
.........................................................8分高一数学参考答案第4页共6页内接圆柱OO的侧面积:32π2π(3)4hSrhh23π(4)2hh(04)h..
.................10分当2h时,S有最大值6π.所以:当2h时,圆柱侧面积的最大值为6π.......................................12分21.(本小题满分12分)解:(Ⅰ)由图形
可知1122BEBAAEABADab................................4分(Ⅱ)25AOAF.................................................
..........................................................5分证明:设AOAF,由于1122AFADDFADAB
ab,故12AOab............................................................................................7分设EOEB
,由(Ⅰ)知:12EBab,故EO12ab...........................................................................................9分在
AOE△中,AOAEEO....................................................................10分即1111(1)2222abbabab.则1,21(
1).2解得:25.即25AOAF........................................................................................
..........12分高一数学参考答案第5页共6页22(本小题满分12分)解:(Ⅰ)在ABC△中,因为2BC,π3ABC,133sin22ABCSABBCABC△,所以33322AB,解得:3AB...............
..........................................................................................2分在ABC△中,由余弦定
理得:2222cos7ACABBCABBCABC,所以7AC................................................................................................
........4分(Ⅱ)设ACD,则ππ44ACBACD.如图,在RtACD△中,因为3AD,所以3sinsinADAC.......................................
...............................................7分在ABC△中,5ππ12BACACBABC,由正弦定理,得sinsinBCACBACABC,即225πsinsin()12,所以5πsin()sin12,...
.................................................................................10分又π(0,)2,5π5ππ012122,高一数学参考答案第6页共6页所以5π12.所以5π24,即
5π24ACD.....................................................................................................12分