【文档说明】江西省上饶市2023届高三第一次高考模拟考试数学(文科)试卷 参考答案.docx,共(7)页,286.127 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-0029e2b0e286a943677dc96c7b88ba13.html
以下为本文档部分文字说明:
上饶市2023届第一次高考模拟考试数学(文科)参考答案一、单选题题号123456789101112答案DAABDCCCBDDB10.【解析】76,76xx1、1431223726,2、
147125277256,3、14111292117296,4、141121572136max=,无解,11.因为,62==RPC,则PC为球O的直径,所以,90==
PBCPAC又,4,==⊥BCACBCAC所以,24,52===ABPBPA在PAB中,515sin=PAB所以PAB外接圆直径,3310sin==PABPB故截面圆面积为325.12.因为xxxgsin22sin)(+=是上的奇函数,且最小正周期
,2),1)(cos1cos2(1cos22cos2)('+−=−+=xxxxxg当2,0x时,在3,0x上单调递增,在35,3x上单调递减,在2,35x上单调递增,则,1233)3()(max==gxg又0)2()(
)0(===ggg,所以当2,0x时,方程1)(=xg有两个不同的解,所以)(xf在2023,0x上共有2024个零点.二、填空题13.914.0.0215.π316.①②③三、解答题17.【解析】根据题表格中数据知,男患者“痊愈快”的概率估计为503910078=,....
.................3分女患者“痊愈快”的概率估计为251610064=..............................................................6分(2)痊愈快慢性别痊愈快痊愈慢总计男性7822100女性6
436100总计14258200...................................8分841.376.420599800581421001002264367820022=−=)(K.......................
..................11分所以有95%的把握认为患者性别与痊愈快慢有关。...................................................12分18.【详解】(1
)因为2122nnnSSS++−+=,所以2112nnnnSSSS+++−−+=,即()()2112nnnnSSSS+++−−−=,..............................2分则212nna
a++−=............................................................................................................3分又12a=,24a=,满足212
aa−=,所以na是公差为2的等差数列................................................................................4分所以数列na的通项公式21)22nann=+−=(..
.........................................................6分(2)设数列nb的公比为q,因为11b=,所以2230bbqq+=+=,所以()10q=−或舍去,()11nnb−=−............
......................................................9分所以()112nnnncabn−==−21222468221)42.nnTcccnnn=+++=−+−++−−=
−(...............................12分19.【解析】(1)在ABC中,因为===120,32ABCBCAB,所以6=AC在BCD中,4,32==DCBC且=30BCD,所以2=BD,因为222DCBDBC=+,由勾股定理可得PDCB
A=90CBD...................................4分PBDCBCBDPBDBDCBCBDPBD平面平面平面平面平面⊥⊥⊥因为PBCCB平面,所以PCBPBD平面平面⊥...........................
.....................6分(2)设点B到PCD平面的距离d由第(1)可知,=60CDB,所以=120ADB,所以3sin21==PDBPBPDSPDB232331v==−PDBC........
..................................................................................8分在PCD中,,,4,262===CDPDPC415sin,4
1cos=−=PDCPDC,所以15sin21==PDCDCPDSPDC,故dPDCB=−1531v又=−PDBCv21531v==−dPDCB,所以5152=d......................
.......................................................................................12分20.【详解】(1)当1a=时,()lnfxxx=+,设切点为()000,lnx
xx+,又1()1fxx=+,切线斜率011kx=+.........................................................................................................2分切线方程为00
001(ln)1()yxxxxx−+=+−.Q过点(0,0),00001ln1()xxxx−−=+−,0xe=...........................................4分所求直线方程为:11
yxe=+...................................................................................5分(2)由题意,方程(ln)exaxxx+=,显然0x,0
a,方程等价于1lnexxxax+=()................................................................................................................
..6分记ln()0exxxgxxx+=(),令()()211ln()0exxxxgxx+−−=,得1ln0xx−−,01.x()gx在区间(0,1)上单调递增,在区间()0+,上单调递减................................8分又0,x→(
)gx→−;1(1);ge=,()0.xgx→+→结合图形可知,..........................10分方程()exfxx=有两个不相等的实根时有110,.aeae........................................12分(另解:(
)中令lntxx=+,则1ttae=(),同理可得)21.解:(1)由题意可得+=+=+=222322cbacaa,解得===312cba,所以椭圆方程为1422=+yx................4分(2)由题意知,直线l的斜率不为0,则不妨设直
线l的方程为(2)xmytt=+,联立2214xyxmyt+==+消去x得()2224240mymtyt+++−=,()()222244440mtmt=−+−,化简整理得224mt+,设),(),,(2
211yxQyxP,则212122224,44mttyyyymm−−+==++,........................................................6分因为以线段PQ为直径的圆经
过A,所以0=AQAP,得()()1212220xxyy−−+=,将1122,xmytxmyt=+=+代入上式,得()()2212121(2)(2)0myymtyyt++−++−=,得()22222421(2)(2)044tmtmmttmm−−+
+−+−=++,解得65t=或2t=(舍去).所以直线l的方程为65xmy=+,则直线l恒过点).0,56(M..............................................................................
..................9分因为过点A做PQ的垂线,垂足为H,所以H在以AM为直径的圆周上,所以点H的轨迹方程为:,2545822=+−yx除去点).0,2(A.............
.................12分22.【详解】(1)由332xtyt=+=−+,消去参数t得3330xy−−=,即直线l的普通方程为3330xy−−=;....................................
.............................2分由2sin4cos=,得22sin4cos=,∵cosx=,siny=,∴24yx=,即曲线C的直角坐标方程24yx=.........................
.......................................................4分(2)直线l的斜率为33,则DE的斜率为3−,所以DE的倾斜角为120,故设直线DE的参数方程为12232xtyt=−=(t
为参数),.................................6分代入24yx=,得238320tt+−=,设点D对应的参数为1t,点E对应的参数为2t,则121283323tttt+=−=−,且
D在x轴上方,有10t,20t..................................7分故()21212121212124111174ttttttPDPEtttttt+−−+=−===−−,即11PDPE+的值为74...............
................................................................10分23.【详解】(1)函数()2123fxxx=−+−,当32x时,()2
123fxxxm=−+−,解得:3124mx+;当1322x时,()2fxm=,且1322x;当12x时,()1232fxxxm=−+−,解得:1142mx−.()fxm的解集为15,22−,5142m+=且1142
m−=−,则6m=;.......................5分(2)1116abc++=,证明:()11111366aabbccabcabcabcbcacab++=++++=++++++()1133222323662abacbcbacacb+
++=+=,当12abc===时等号成立......................................................................................1