2016年广西桂林市中考数学试卷

PDF
  • 阅读 2 次
  • 下载 0 次
  • 页数 23 页
  • 大小 595.510 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2016年广西桂林市中考数学试卷
可在后台配置第一页与第二页中间广告代码
2016年广西桂林市中考数学试卷
可在后台配置第二页与第三页中间广告代码
2016年广西桂林市中考数学试卷
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有2人购买 付费阅读2.40 元
/ 23
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2016年广西桂林市中考数学试卷.pdf,共(23)页,595.510 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-f6c04bfcd3e4bff63b77a22d2988eacc.html

以下为本文档部分文字说明:

2016年广西桂林市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.(3分)下列实数中小于0的数是()A.2016B.﹣2016C.D.2.(3分)如图,直线a∥b,c是截线,∠1的度数是()A.55°B.75°C.110°D.125°3.(3分)

一组数据7,8,10,12,13的平均数是()A.7B.9C.10D.124.(3分)下列几何体的三视图相同的是()A.圆柱B.球C.圆锥D.长方体5.(3分)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形

6.(3分)计算3﹣2的结果是()A.B.2C.3D.67.(3分)下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y98.(3分)如图,直线y=ax+b

过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣39.(3分)当x=6,y=3时,代数式()•的值是()A.2B.3C.6D.910.(3分)若关于x的一元二次方程(k﹣1)x2+

4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>511.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△A

OB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π12.(3分)已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物

线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个二、填空题:本大题共6小题,每小题3分,共18分13.(3分)分解因式:x2﹣36=.14.(3分)若二次根式在实数范围内有意义,则x的取

值范围是.15.(3分)把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是.16.(3分)正六边形的每个外角是度.17.(3分)如图,在Rt△ACB中

,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.18.(3分)如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的

路径长是.三、解答题:本大题共8小题,共66分19.(6分)计算:﹣(﹣4)+|﹣5|+﹣4tan45°.20.(6分)解不等式组:.21.(8分)如图,▱ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全图形;(2)

求证:BE=DF.22.(8分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),

D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名

?23.(8分)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的

面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.根据上述材料,解答下列问题:如图,在△A

BC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.24.(8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物

品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查

,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?25.(10分)如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B

=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.26.(12分)如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕

点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;(2)当四边形ABDE是矩形时,求a的值及抛物线y2的解析式;(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直

线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.2016年广西桂林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.【分析】根据正数大于负数0,0大于负数进行选择即可.【解答】解:∵﹣2

016是负数,∴﹣2016<0,故选:B.【点评】本题考查了实数的大小比较,掌握在数轴上右边的数总大于左边的数.2.【分析】根据平行线的性质即可得到结论.【解答】解:∵直线a∥b,∴∠1=55°,故选:A

.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.3.【分析】根据平均数的定义:平均数是指在一组数据中所有

数据之和再除以数据的个数进行计算即可.【解答】解:(7+8+10+12+13)÷5=50÷5=10答:一组数据7,8,10,12,13的平均数是10.故选:C.【点评】本题考查了平均数的知识,掌握一组数据平均数的求解方法是解题关键.4.【分

析】找出圆柱,球,圆锥,以及长方体的三视图,即可做出判断.【解答】解:A、圆柱的三视图,如图所示,不合题意;B、球的三视图,如图所示,符合题意;C、圆锥的三视图,如图所示,不合题意;D、长方体的三视图,如图所示,不合题意;.故选:B.【点评】

此题考查了简单几何体的三视图,熟练掌握三视图的定义是解本题的关键.5.【分析】根据轴对称图形的概念,结合选项求解即可.【解答】解:A、直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;B、平行四边形不是轴对称图形,本选项错误;C、直角梯形不是轴对称图形,本选项错误;D、正方形是轴对称图

形,本选项正确.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.【分析】直接利用二次根式的加减运算法则求出答案.【解答】解:原式=(3﹣2)=.故选:A.【点评】此题主要考查了二次根式的加

减运算,正确掌握运算法则是解题关键.7.【分析】A、原式利用积的乘方运算法则计算得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.【解答】

解:A、原式=x3y3,错误;B、原式=1,错误;C、原式=15x5,正确;D、原式=7x2y3,错误,故选:C.【点评】此题考查了单项式乘单项式,合并同类项,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的

关键.8.【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故

选:D.【点评】此题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

9.【分析】先对所求的式子化简,然后将x=6,y=3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选:C.【点评】本题考查分式的化简求值,解题的关键是对所求式子进行灵活变化.然后对分式进行化简.10.【分析】根据方程为一元二次方程且有两个不相

等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故

选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得

出不等式组是关键.11.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠A

OB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:

D.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=和旋转的性质是解题的关键.12.【分析】以点B为圆心线段AB长为半径作圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令

抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径作圆,交抛物线于点C、M、N点,

连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称

轴为直线x=,∴点B在抛物线的对称轴上,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.设抛物线与x轴的交点为点E,F(点E在点F左边),令y=﹣(x﹣)2+4中y=0,则﹣(x

﹣)2+4=0,解得:x1=﹣,x2=3,∴点E的坐标为(﹣,0),点F的坐标为(3,0).又∵点B的坐标为(,0),∴BE=BF=2,∴点E与点M重合,点F与点N重合.△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心

,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使

△ABP为等腰三角形的点P的个数有3个.故选:A.【点评】本题考查了二次函数与坐标轴的交点坐标、等腰三角形的判定、一次函数与坐标轴的交点坐标以及等边三角形的判定定理,解题的关键是依照题意画出图形,利用数形结合来解决问题.本题属于中档题,难度不小,本题不需要求出P点坐

标,但在寻找点P的过程中会出现多次点的重合问题,由此给解题带来了难度.二、填空题:本大题共6小题,每小题3分,共18分13.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+6)(x﹣6),故答案为:(x+6)(x﹣6)【点评】此题考

查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答

案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.15.【分析】先确定9张扑克牌上的数字为3的倍数的张数,再根据随机事件A的概率P(A)=,求解即可.【解答】解:∵数字为3的倍数的扑克牌一共有3张,且共有9张扑克牌,∴P==.故答案为:.【点评】本题考查了概率公式的

知识点,正确找出数字为3的倍数的扑克牌的张数是解答本题的关键.16.【分析】正多边形的外角和是360度,且每个外角都相等,据此即可求解.【解答】解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.【点评】本题考查了正多边形的外角的计算,理解外角和是360度,且每个外角都相等是关

键.17.【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到,求得CH=,根据等腰直角三角形的性质得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直

角三角形,根据等腰直角三角形的性质即可得到结论.【解答】解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是

AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴

△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三

角形是解题的关键.18.【分析】如图点P运动的路径是以G为圆心的弧,在⊙G上取一点H,连接EH、FH,只要证明∠EGF=90°,求出GE的长即可解决问题.【解答】解:如图点P运动的路径是以G为圆心的弧,在⊙G上取一点H,连接EH、FH.∵四边形AOCB是正方形

,∴∠AOC=90°,∴∠AFP=∠AOC=45°,∵EF是⊙O直径,∴∠EAF=90°,∴∠APF=∠AFP=45°,∴∠EPF=135°,∵EF是定值,∴点P在以点G为圆心,GE为半径的圆上,∴∠H=∠APF=45°,∴∠EGF=2∠H=90°,∵EF=4,GE=GF,∴

EG=GF=2,∴的长==π.故答案为π.【点评】本题考查正方形的性质、旋转的性质、轨迹、圆等知识,解题的关键是正确发现轨迹的位置,学会添加辅助线,利用圆的有关性质解决问题,属于中考填空题中的压轴题.三

、解答题:本大题共8小题,共66分19.【分析】先去括号、计算绝对值、零指数幂、三角函数值,再计算乘法、减法即可.【解答】解:原式=4+5+1﹣4×1=6.【点评】本题主要考查实数的混合运算,熟练掌握相反数、绝对值的性质及

零指数幂、三角函数值的计算是关键.20.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得x≤5.则不等式组的解集是:2<x≤5.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的

解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.【分析】(1)如图所示;(2

)由全等三角形的判定定理SAS证得△BEO≌△DFO,得出全等三角形的对应边相等即可.【解答】(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,∴OB=OD,OA=OC.又∵E,F分别是OA、OC的中点,∴OE=

OA,OF=OC,∴OE=OF.∵在△BEO与△DFO中,,∴△BEO≌△DFO(SAS),∴BE=DF.【点评】本题主要考查了全等三角形的判定与性质、平行四边形的性质的运用;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.22.【分析】

(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)

由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,

补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)先根据BC、A

C、AB的长求出P,再代入到公式S=即可求得S的值;(2)根据公式S=r(AC+BC+AB),代入可得关于r的方程,解方程得r的值.【解答】解:(1)∵BC=5,AC=6,AB=9,∴p===10,∴S===10;故△ABC的面积10;(2)∵S=r(AC+BC+AB),∴10=r(5

+6+9),解得:r=,故△ABC的内切圆半径r=.【点评】本题主要三角形的内切圆与内心、二次根式的应用,熟练掌握三角形的面积与内切圆半径间的公式是解题的关键.24.【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买

甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.【解答】解:(1)设每件

乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,=,解得:x=60.经检验,x=60是原方程的解,x+10=60+10=70.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=5

00,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.【点评】本题考查分式方程、一元一次方程的应用,分析题意,找到合适的等量

关系是解决问题的关键.25.【分析】(1)如图1,连结CO.先由勾股定理求出AC=10,再利用勾股定理的逆定理证明△ACD是直角三角形,∠C=90°,那么OC为Rt△ACD斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半得出OC=AD=r,即点C在圆O上;(2)如图2,延长

BC、DE交于点F,∠BFD=90°.根据同角的余角相等得出∠CDE=∠ACB.在Rt△ABC中,利用正切函数定义求出tan∠ACB==,则tan∠CDE=tan∠ACB=;(3)如图3,连结AE,作OG⊥ED于点G,

则OG∥AE,且OG=AE.易证△ABC∽△CFD,根据相似三角形对应边成比例求出CF=,那么BF=BC+CF=.再证明四边形ABFE是矩形,得出AE=BF=,所以OG=AE=.【解答】(1)证明:如图1,

连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠ACD=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=

r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB

=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AED=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.【点评

】本题是圆的综合题,考查了勾股定理及其逆定理,直角三角形的性质,余角的性质,锐角三角函数定义,相似三角形的判定与性质,综合性较强,难度适中.准确作出辅助线,利用数形结合是解题的关键.26.【分析】(1)直接将点A的坐标代入y1=ax2﹣2ax+1得出m的

值,因为由图象可知点A在第一象限,所以m≠0,则m=2,写出A,C的坐标,点D与点A关于点C对称,由此写出点D的坐标;(2)根据顶点坐标公式得出抛物线y1的顶点B的坐标,再由矩形对角线相等且平分得:BC=CD,在直角△BMC中,由勾股定理列方程求出a

的值得出抛物线y1的解析式,由旋转的性质得出抛物线y2的解析式;(3)分两种情况讨论:①当0≤t≤1时,S=S△GHD=S△PDH+S△PDG,作辅助线构建直角三角形,求出PG和PH,利用面积公式计算;②当1<t≤2时,S=S△HMD′﹣S△GE′F﹣S△GE′M,利用30°角和60°角的直

角三角形的性质进行计算得出结论.【解答】解:(1)由题意得:将A(m,1)代入y1=ax2﹣2ax+1得:am2﹣2am+1=1,解得:m1=2,m2=0(舍),∴A(2,1)、C(0,1)、D(﹣2,1);(2)如图1,由(1)知:B(1,1

﹣a),过点B作BM⊥y轴,若四边形ABDE为矩形,则BC=CD,∴BM2+CM2=BC2=CD2,∴12+(﹣a)2=22,∴a=,∵y1抛物线开口向下,∴a=﹣,∵y2由y1绕点C旋转180°得到

,则顶点E(﹣1,1﹣),∴设y2=a(x+1)2+1﹣,则a=,∴y2=x2+2x+1;(3)如图1,当0≤t≤1时,则DP=t,构建直角△BQD,得BQ=,DQ=3,则BD=2,∴∠BDQ=30°,∴PH=,PG

=t,∴S=(PG+PH)×DP=t2,如图2,当1<t≤2时,因为矩形ABDE沿直线l折叠,所以延长DE和D′E′交直线l于同一点,设这一点为M,D(﹣2,1),E(﹣1,1﹣),∴DE==2,∴EM=DM﹣DE=2t﹣2,∵∠EMG=30°

,∴EG=E′G=(t﹣1),在Rt△FEM中,∠EMF=2×30°=60°,∴∠EFM=30°,∴FM=2EM=4t﹣4,∴E′F=FM﹣E′M=FM﹣EM=4t﹣4﹣(2t﹣2)=2t﹣2=2(t﹣1),S△GE′F=(t﹣1)2,S=S△HMD′﹣S△GE′F﹣S

△GE′M=×t×2t﹣(t﹣1)2﹣×(t﹣1)×(2t﹣2),=﹣;综上所述:S=t2(0≤t≤1)或S=﹣(1<t≤2).【点评】本题考查了二次函数的性质,旋转的性质和矩形对角线的性质,以及三角函数及特殊角的应用,综合性较强;善于从已知中挖掘隐

藏条件是本题的关键:如此题可以计算矩形的边长及对角线与边的夹角,得出30°,以此为突破口,将需要的边长用t表示,得出函数关系式;另外本题还运用了分类讨论的思想,这在二次函数中运用较多,应熟练掌握.声明:试题解析

著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/8/229:39:43;用户:18366185883;邮箱:18366185883;学号:22597006获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 128952
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?