《山东中考真题数学》2014年山东省临沂市中考数学试题及答案

PDF
  • 阅读 2 次
  • 下载 0 次
  • 页数 17 页
  • 大小 665.331 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《山东中考真题数学》2014年山东省临沂市中考数学试题及答案
可在后台配置第一页与第二页中间广告代码
《山东中考真题数学》2014年山东省临沂市中考数学试题及答案
可在后台配置第二页与第三页中间广告代码
《山东中考真题数学》2014年山东省临沂市中考数学试题及答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有2人购买 付费阅读2.40 元
/ 17
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《山东中考真题数学》2014年山东省临沂市中考数学试题及答案.pdf,共(17)页,665.331 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-f02549ec259b5e6d40ce1552bb57b7ce.html

以下为本文档部分文字说明:

绝密★启用前试卷类型:A2014年临沂市初中学生学业考试试题数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束

后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.-3的相反数是(A)3.(B)-3.(C)13.(D)13.2.根据世界贸易组织(

WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为(A)124.1610美元.(B)134.1610美元.(C)120

.41610美元.(D)1041610美元.[来源:Zxxk.Com]3.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为(A)40°.(B)60°.(C)80°.(D)100°.4.下列计算正确的是2C(第3

题图)l1AB1l2(A)223aaa.(B)2363)abab(.(C)22()mmaa.(D)326aaa.5.不等式组-2≤11x的解集,在数轴上表示正确的是(A)(B)(C)(D)6.当2a时,22211(1)aaaa的结果是(A)32.(B)3

2.(C)12.(D)12.7.将一个n边形变成n+1边形,内角和将(A)减少180°.(B)增加90°.(C)增加180°.(D)增加360°.8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知

A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500元购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是(A)2700450020xx.(B)2700450020xx.(C)2700450020xx.(D)270045

0020xx.01-1-2-301-1-2-301-1-2-301-1-2-39.如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为(A)25°.(B)50°.(C)60°.(D)80°.10.从1,2,3,4中任

取两个不同的数,其乘积大于4的概率是(A)16.(B)13.(C)12.(D)23.11.一个几何体的三视图如图所示,这个几何体的侧面积为(A)2cm2.(B)4cm2.(C)8cm2.(D)16cm2.12.请你计算:(1)(1)xx,2(1)(1)xxx,…,猜想2(

1)(1xxx…)nx的结果是[来源:学科网](A)11nx.(B)11nx.(C)1nx.(D)1nx.(第11题图)2cm主视图左视图俯视图CBAO(第9题图)B15°60°75°(第13题图)AC东北13.如图,

在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为(A)20海里.(B)103海里.(C)202海里.(D)30海里.14.在平面直

角坐标系中,函数22(yxxx≥0)的图象为1C,1C关于原点对称的图象为2C,则直线ya(a为常数)与1C,2C的交点共有(A)1个.(B)1个,或2个.(C)1个,或2个,或3个.(D)1个,或

2个,或3个,或4个.第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分

,共15分)15.在实数范围内分解因式:36xx.16.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是小时.17.如图,在ABCD中,10BC,9sin10B,ACBC,则ABCD的面积是.1

8.如图,反比例函数4yx的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为.19.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同....的,也就是说,集合中的元素是不重复出现的.如一组数1,

1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则

A+B=.时间(小时)4567人数1020155(第18题图)ADBC(第17题图)yxOABD三、解答题(本大题共7小题,共63分)20.(本小题满分7分)计算:11sin6032831.21.(本小题满分7分)随着人民生活水平的提高,购买老年代步车的人越来越多.这些老

年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只

选一项):A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车管理;E:分时间分路段限行.调查数据的部分统计结果如下表:(第21题图)(1)根据上述统计表中的数据可得m=_______,n=______,a=________;(2)在答题卡中

,补全条形统计图;(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?管理措施回答人数百分比A255%B100mC7515%Dn35%E12525%合计a100%ABCDE管理措施人数200175150125100755025A22.(本小

题满分7分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DEAC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.23.(本小题满分9分)对一张矩形纸片ABCD进行折叠,具体操作如下:第一

步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再一次折叠,使点A落在MN上的点A处,并使折痕经过点B,得到折痕BE,同时,得到线段BA,EA,展开,如图1;第三步:再沿EA所在的直

线折叠,点B落在AD上的点B处,得到折痕EF,同时得到线段BF,展开,如图2.(1)证明:30ABE°;(2)证明:四边形BFBE为菱形.24.(本小题满分9分)某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出

发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行

到景点C的速度至少为多少?(结果精确到0.1米/分钟)(第23题图)BCNA'图1ABDCNA'FB'图2E(第24题图)t(分钟)MEDAM甲乙3020609030005400S(米)0(第22题图)BCODE25.(本小题满分11分)

问题情境:如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分DAM.探究展示:(1)证明:AMADMC;(2)AMDEBM是否成立?若成立,请给出证明;若不成立,请说明理由.拓展延伸:(3

)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.26.(本小题满分13分)如图,在平面直角坐标系中,抛物线与x轴交于点A(-1,0)和点B(1,0),直线21

yx与y轴交于点C,与抛物线交于点C,D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G,P,Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G

点的坐标.ABMDEC图1ABM图2DEC(第25题图)(第26题图)xyABCDO绝密★启用前试卷类型:A2014年临沂市初中学生学业考试试题数学参考答案及评分标准一、选择题(每小题3分,共42分)题号1234567891011121314答案AADBBDCDBCBACC二、填空题(每小题

3分,共15分)15.(6)(6)xxx;16.5.3;17.1819;18.1yx;19.{-3,-2,0,1,3,5,7}.(注:各元素的排列顺序可以不同)20.解:原式=31313228(31)(31)=313222

·······························································(6分)=122=32.·································

···································(7分)(注:本题有3项化简,每项化简正确得2分)21.(1)20%,175,500.························

·········································(3分)(2)(注:画对一个得1分,共2分)……………(2分)管理措施人数200175150125100755025ABCDEBCODEGFA(3)∵2600×35%=910(人),∴选择D选项的居民约有910人.·

···················································(2分)22.(1)(本小问3分)证明:连接OD.∵OB=OD,∴∠OBD=∠ODB.又∵∠A=∠B=30°

,∴∠A=∠ODB,∴DO∥AC.································(2分)∵DE⊥AC,∴OD⊥DE.∴DE为⊙O的切线.··························································

·················(3分)(2)(本小问4分)连接DC.∵∠OBD=∠ODB=30°,∴∠DOC=60°.∴△ODC为等边三角形.∴∠ODC=60°,∴∠CDE=30°.又∵BC=4,∴DC=2,∴CE=1.·········

··················································································(2分)方法一:过点E作EF⊥BC,交BC的延长线于点F.∵∠ECF=∠A+∠B=60°,∴EF=C

E·sin60°=1×32=32.···························································(3分)∴S△OEC11332.2222OCEF·······································

··············(4分)方法二:[来源:Z.xx.k.Com]过点O作OG⊥AC,交AC的延长线于点G.∵∠OCG=∠A+∠B=60°,∴OG=OC·sin60°=2×32=3.·········································

·················(3分)∴S△OEC11313.222CEOG······················································(4分)方法三:∵OD∥CE,∴S△OEC=S△DEC.又∵DE=DC·cos30°=2×

32=3,························································(3分)∴S△OEC11313.222CEDE·······················

·······························(4分)23.证明:(1)(本小问5分)由题意知,M是AB的中点,△ABE与△A'BE关于BE所在的直线对称.[来源:学&科&网Z&X&X&K]∴AB=A'B,∠ABE=

∠A'BE.················(2分)在Rt△A'MB中,12MBA'B,∴∠BA'M=30°,···········································································

·········(4分)∴∠A'BM=60°,∴∠ABE=30°.·················································································

····(5分)(2)(本小问4分)∵∠ABE=30°,∴∠EBF=60°,∠BEF=∠AEB=60°,∴△BEF为等边三角形.················(2分)由题意知,△BEF与△B'EF关于EF所在的直线对称.∴BE=B'E=B'F=BF,∴四边形BF

'BE为菱形.·······································································(4分)24.解:(1)(本小问5分)当0≤t≤90时,设甲步行路程与时间的函数解析式为S=at.∵点(90,5400)在S=at的图象上

,∴a=60.∴函数解析式为S=60t.·····································································(1分)[来源:学§科§网]

当20≤t≤30时,设乙乘观光车由景点A到B时的路程与时间的函数解析式为S=mt+n.∵点(20,0),(30,3000)在S=mt+n的图象上,∴200,303000.mnmn解得300,

6000.mn·················································(2分)∴函数解析式为S=300t-6000(20≤t≤30).·······································

··········(3分)根据题意,得60,3006000,StStCNBA'图1EDAMB'图2ABDCNA'FME解得25,1500.ts····························

························································(4分)∴乙出发5分钟后与甲相遇.·······························································

···(5分)(2)(本小问4分)设当60≤t≤90时,乙步行由景点B到C的速度为v米/分钟,根据题意,得5400-3000-(90-60)v≤400,··································

·············(2分)解不等式,得v≥20066.73.·······························································(3分)∴乙步行由B到C的速度至少为66.7米/分钟.····················

·····················(4分)25.证明:(1)(本小问4分)方法一:过点E作EF⊥AM,垂足为F.∵AE平分∠DAM,ED⊥AD,∴ED=EF.·················

··················(1分)由勾股定理可得,AD=AF.······································(2分)又∵E是CD边的中点,∴EC=ED=EF.又∵EM=EM,

∴Rt△EFM≌Rt△ECM.∴MC=MF.·························································································(3分)∵

AM=AF+FM,∴AM=AD+MC.···················································································(4分)方法二:连

接FC.由方法一知,∠EFM=90°,AD=AF,EC=EF.·······························(2分)则∠EFC=∠ECF,∴∠MFC=∠MCF.∴MF=MC.·····················

····································································(3分)∵AM=AF+FM,∴AM=AD+MC.···········································

········································(4分)方法三:延长AE,BC交于点G.∵∠AED=∠GEC,∠ADE=∠GCE=90°,DE=EC,∴△ADE≌△GCE.∴AD=GC,∠DAE=∠G.···························

·············································(2分)又∵AE平分∠DAM,∴∠DAE=∠MAE,∴∠G=∠MAE,∴AM=GM,·······························

·······················································(3分)CGABMDEFN∵GM=GC+MC=AD+MC,∴AM=AD+MC.····························

·······················································(4分)方法四:连接ME并延长交AD的延长线于点N,∵∠MEC=∠NED,EC=ED,∠MCE=∠NDE=90°,∴△MCE≌△NDE.∴MC=ND,∠CME=∠DNE.··

·······························································(2分)由方法一知△EFM≌△ECM,∴∠FME=∠CME,∴∠AMN=∠ANM.·······················

························································(3分)∴AM=AN=AD+DN=AD+MC.································

································(4分)(2)(本小问5分)成立.··········································(1分)方法一:延长CB

使BF=DE,连接AF,∵AB=AD,∠ABF=∠ADE=90°,∴△ABF≌△ADE,∴∠FAB=∠EAD,∠F=∠AED.·······(2分)∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠FAB=∠MAE,∴∠FAM=∠FAB+∠BAM=∠BAM+∠MAE=∠B

AE.····································(3分)∵AB∥DC,∴∠BAE=∠DEA,∴∠F=∠FAM,∴AM=FM.······················································

···································(4分)又∵FM=BM+BF=BM+DE,∴AM=BM+DE.·················································································

··(5分)方法二:设MC=x,AD=a.由(1)知AM=AD+MC=a+x.在Rt△ABM中,∵222AMABBM,∴222()()axaax,······························································

·······(3分)∴14xa.··························································································(4分)ABMDECF∴34BMa

,54AMa,∵BM+DE=315424aaa,∴AMBMDE.··············································································(5分)(3)(本小问2分)

AM=AD+MC成立,·············································································(1分)AM=DE+BM不成立.···························

················································(2分)26.(1)(本小问3分)解:在21yx中,令0x,得1y.∴C(0,-1)···························

·······(1分)∵抛物线与x轴交于A(-1,0),B(1,0),∴C为抛物线的顶点.设抛物线的解析式为21yax,将A(-1,0)代入,得0=a-1.∴a=1.∴抛物线的解析式为21yx.········(3分)(2)(本小问5分)方法一:设直线21y

x与x轴交于E,则1(2E,0).························································································(1分)∴2151()22CE,13122AE

.····················································································(2分)连接AC,过A作AF⊥CD,垂足为F,S△CAE1122AEOCCEAF

,·····························································(4分)即131512222AF,∴355AF.································

······················································(5分)方法二:由方法一知,∠AFE=90°,32AE,52CE.··························································

·(2分)在△COE与△AFE中,图1xyABCDOFEM∠COE=∠AFE=90°,∠CEO=∠AEF,∴△COE∽△AFE.∴AFAECOCE,·········································

···········································(4分)即32152AF.∴355AF.··········································································

············(5分)(3)(本小问5分)由2211xx,得10x,22x.∴D(2,3).···········································································

···············(1分)如图1,过D作y轴的垂线,垂足为M,由勾股定理,得222425CD.·············································

······························(2分)在抛物线的平移过程中,PQ=CD.(i)当PQ为斜边时,设PQ中点为N,G(0,b),则GN=5.∵∠GNC=∠EOC=90°,∠GCN=∠ECO,∴△GNC∽△EOC.∴GNCGOECE

,∴511522b,∴b=4.∴G(0,4).·································(3分)(ii)当P为直角顶点时,设G(0,b),则25PG,同(i)可得b=9,则G(0,9).···································

·····················································(4分)(iii)当Q为直角顶点时,同(ii)可得G(0,9).xyECOGQPN图2综上所述,符合条件的点G有两个,分别是1G(0,4),2G(0,9).·

················(5分)xyECDOGQP图3xyECOGQP图4获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 128952
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?