《山东中考真题数学》2022年山东省淄博市中考数学试卷参考答案及解析

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 10 页
  • 大小 201.315 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《山东中考真题数学》2022年山东省淄博市中考数学试卷参考答案及解析
可在后台配置第一页与第二页中间广告代码
《山东中考真题数学》2022年山东省淄博市中考数学试卷参考答案及解析
可在后台配置第二页与第三页中间广告代码
《山东中考真题数学》2022年山东省淄博市中考数学试卷参考答案及解析
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有2人购买 付费阅读2.40 元
/ 10
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《山东中考真题数学》2022年山东省淄博市中考数学试卷参考答案及解析.docx,共(10)页,201.315 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-ead3b50ae56137fded079006fa786813.html

以下为本文档部分文字说明:

数学试题参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分。题目123456789101112题号ADCDBACCDBAB二、填空题:本大题共5个小题,每小题4分,共20分。13.a≥514.x(x+3)(x—3)15.(

1,3)16.—217.(—2023,2022)三、解答题:本大题共7个小题,共70分。18.(本题满分8分)解:整理方程组得232313xyxy−=+=①②,·········································2分①×2

—②得—7y=7,y=1,····································································4分把y=1代入①得x—2=3,解得x=5,·········

·······················································6分∴方程组的解为51xy==.··································

················8分19.(本题满分8分)证明:∵△ABC是等腰三角形,∴∠EBC=∠DCB,·······················································2

分在△EBC与△DCB中,∴BE=CD,BC=CB∴△EBC≌△DCB(SAS),··················································6分∴BD=CE.················

··············································8分20.(本题满分10分)解:(1)将点A(1,2)代入y=mx,得m=2,∴双曲线的表达式为:y=2x,·········

······································1分把A(1,2)和B(4,0)代入y=kx+b得:y=240kbkb+=+=,解得:2383kb=−=,·····················

····················3分∴直线的表达式为:y=23−x+83;·········································4分(2)联立22833yxyx==−+,解得12xy==,或323xy==,

·························5分∵点A的坐标为(1,2),∴点B的坐标为(3,23),···············································6分∵S△

AOB=S△AOB—S△AOB=12OC·Ay—12OC·By=12×4×2—12×4×23=83,∴△AOB的面积为83;·········································

··········8分(3)1<m<3.····························································10分21.(本题满分10分)解:(1)12099········································

················4分(2)如图:··············8分(3)把“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程分别记为A、B、C、D、E,画树状图如下:共有25种等可能的结果,其中小刚

和小强两人恰好选到同一门课程的结果有5种,∴小刚和小强两人恰好选到同—门课程的概率P=51255=.············································10分22.(本题满分10分)

解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:····················2分由题意知,EG=BF=40米,EF=BG=12.88米,∠HAE=16°=∠AEG=16°,∠C

AH=9°,在Rt△AEG中,tan∠AEG=AGEG,∴tan16°=40AG,即0.287≈40AG,············································4分∴AG=40×0.287=11.48(米),∴AB=AG+BG=11.48+12.88=24

.36(米),····································6分∴HD=AB=24.36米,在Rt△ACH中,AH=BD=BF+FD=80米,tan∠CAH=CHAH,∴tan9°=80CH,

即0.158≈80CH,············································8分∴CH=80×0.158=12.64(米),∴CD=CH+HD=12.64+24.36=37.00(米),则综合楼的高度约是37.00米.··

···········································10分注:结果精确到0.01米,须保留两位小数,未保留最后一步不得分!23.(本题满分12分)解:(1)证明:由题意得,AI、BI分别平分∠BAC、∠ABC,∴∠BAD=∠CAD,∠AB

I=∠CBI,············································2分又∵∠CAD=∠CBD,∴∠BAD=∠CBD,∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD,∴BD

=DI;·······························································4分22题答案图24题(2)答案图(2)证明:如图,连接OD,∵∠CAD=∠BAD,∴BDCD=,∴OD⊥BC,·············

··························5分∵DE∥BC,∴OD⊥DE,······························································6分∴DE是⊙O

的切线;·······················································7分(3)证明:如图,连接BH,CH,∵GH是⊙O的切线,∴∠CHG=∠HBG,·····························8分∵∠CGH=∠BGH,∴△HCG∽

△BHG,∴GH2=BG•CG,···························································9分∵AD∥GF,∴∠AFG=∠CAD,∵∠CAD=∠FBG,∴

∠FBG=∠AFG,·····································10分∵∠CGF=∠BGF,∴△CGF∽△FGB,∴FG2=BG•CG,············································

··············11分∴FG=HG.······························································12分24.(本题满分12分)解:(1)∵抛物线的顶点D(1,4)∴根据顶点式

,抛物线的解析式为y=—(x—1)2+4=—x2+2x+3;············2分(2)如图,设直线l交x轴于点T,连接PT,BD,BD交PM于点J.设P(m,—m2+2m+3).···························3分点D(1,4)在直线l:y=43x

+t上,∴4=43x+t,∴t=83,∴直线DT的解析式为y=43x+83,···········································4分23题(2)答案图23题(3)答案图24题(3)答案图令y=0,得到x=

—2,∴T(—2,0),∴OT=2,∵B(3,0),∴OB=3,∴BT=5,························································5分∵DT=2234+=5,∴TD=TB,∵PM⊥BT,PN⊥DT,∴S四边形DTBP=S△PDT+S△

PBT=12×DT×PN+12×TB×PM=(PM+PN),∴四边形DTBP的面积最大时,PM+PN的值最大,········································································6分∵D(1,4),B(3

,0),∴直线BD的解析式为y=—2x+6,···········································7分∴J(m,—2m+6),∴PJ=—m2+4m—3,∵S四边形DTBP=S△DT

B+S△BDP=12×5×4+12×(—m2+4m—3)×2=—m2+4m+7=—(m—2)2+11∵—1<0,∴m=2时,四边形DTBP的面积最大,最大值为11,∴PM+PN的最大值=25×11=225;····························

··············8分(3)四边形AFBG的面积不变.理由:如图,设P(m,—m2+2m+3),················9分∵A(—1,0),B(3,0),∴直线AP的解析式为y=—(m—3)x—m+3,··········10分∴E(1,—2m+6),·∵E,G关于x

轴对称,∴G(1,2m—6),∴直线PB的解析式y=—(m+1)x+3(m+1),································11分∴F(1,2m+2),∴GF=2m+2—(2m—6)=8,∴四边形AFBG的面积=12×AB×

FG=12×4×8=16.∴四边形AFBG的面积是定值.············································12分数学试题参考解析一、选择题1.【答案】A【解析】∵实数a的相反数是—1,∴a=1,∴a+1=2.2.【答案】D【解析】A选项不

是中心对称图形,也不是轴对称图形,故此选项不合题意;B选项不是中心对称图形,是轴对称图形,故此选项不合题意;C选项不是中心对称图形,是轴对称图形,故此选项不合题意;D选项既是轴对称图形,又是中心对称图形,故此选项符合题意.3.【答案】C【解析】因为图中两个空白面不是相对面,所以图

中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故B不符合题意;因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一

个四字成语金榜题名,故C符合题意;因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意.4.【答案】D【解析】中位数为第10个和第11个的平均数15152+=15,众数为15.5.【答案】B【解析】∵AB∥CD,∴∠DFE=∠BAE=50°

,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=12∠DFE=12×50°=25°.6.【答案】A【解析】A选项≈3.1416,B选项≈3.1408,C选项≈3.14,D选项≈3.1428,π≈3.14159≈3.

1416,A选项符合题意.7.【答案】C【解析】连接AD,如图,∵AB=AC,∠A=120°,∴∠B=∠C=30°,由作法得DE垂直平分AC,∴DA=DC=3,∴∠DAC=∠C=30°,∴∠BAD=120°—30°=90°,在Rt△ABD中,∵

∠B=30°,∴BD=2AD=6.8.【答案】C【解析】原式=4a6b2—3a6b2=a6b2,9.【答案】D【分析】设第二次采购单价为x元,则第一次采购单价为(x+10)元,根据单价=总价÷数量,结合总费用降低

了15%,采购数量与第一次相同,即可得出:2000020000(115%)10xx−=+10.【答案】【解析】连接AC交BD于O,如图,∵四边形ABCD为菱形,∴AD∥BC,CB=CD=AD=4,AC⊥AB,BO=OD,OC=AO,

∵E为AD边的中点,∴DE=2,∵∠DEF=∠DFE,∴DF=DE=2,∵DE∥BC,∴∠DEF=∠BCF,∵∠DFE=∠BFC,∴∠BCF=∠BFC,∴BF=BC=4,∴BD=BF+DF=4+2=6,∴OB=OD=3,在Rt△BOC中,OC=

2243−=7∴AC=2OC=27∴菱形ABCD的面积=12AC·BD=12×2×6=6711.【答案】A【解析】∵二次函数y=ax2+2的图象经过P(1,3),∴3=a+2,∴a=1,∴y=x2+2,∵Q

(m,n)在y=x2+2上,∴n=m2+2,∴n2—4m2—4n+9=(m2+2)2—4m2—4(m2+2)+9=m4—4m2+5=(m2—2)2+1,∵(m2—2)≥0,∴n2—4m2—4n+9的最小值为1.12.【答案】B【解析】如图,连接AI,BI,C

I,DI,过点I作IT⊥AC于点T.∵I是△ABD的内心,∴∠BAI=∠CAI,∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,∵∠ITD=∠IED=90°,∠IDT=∠IDE,DI=DI,∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,∵∠BE

I=∠CTI=90°,∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,设BE=CT=x,∵DE=DT,∴10—x=x—4,∴x=7,∴BE=7.二、填空题13.【答案】a≥5【解析】∵a-5≥0,∴a

≥5.14.【答案】x(x+3)(x—3)【解析】原式=x(x2-9)=x(x+3)(x—3).15.【答案】(1,3)【解析】∵点A(—3,4)的对应点是A1(2,5),∴点B(—4,2)的对应点B1的坐标

是(1,3).16.【答案】—2【解析】原式=22222(1)1111xxxxxxx−−−−==−−−−=—2.17.【答案】(—2023,2022)【解析】∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C

逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(-3,2),D3(-3,-4),D4(5,-4),D5(5,6),D6(-7,6),……,观察发现:每四个点一个

循环,D4n+2(-4n-3,4n+2),∵2022=4×505+2,∴D2022(-2023,2022).获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 132728
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?