【文档说明】《山东中考真题数学》2022年山东省淄博市中考数学试卷参考答案及解析.docx,共(10)页,201.315 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-ead3b50ae56137fded079006fa786813.html
以下为本文档部分文字说明:
数学试题参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分。题目123456789101112题号ADCDBACCDBAB二、填空题:本大题共5个小题,每小题4分,共20分。13.a≥514.x(x+3)(x—3)15.(1,3)16.—217.(—2023,2022)
三、解答题:本大题共7个小题,共70分。18.(本题满分8分)解:整理方程组得232313xyxy−=+=①②,·········································2分①×2—②得—7y=7,y=1,·····
·······························································4分把y=1代入①得x—2=3,解得x=5,···································
·····························6分∴方程组的解为51xy==.··················································8分19.(本题满分8分)证明:∵△ABC是等腰三角形,∴∠EBC=∠DCB,······
·················································2分在△EBC与△DCB中,∴BE=CD,BC=CB∴△EBC≌△DCB(SAS),········································
··········6分∴BD=CE.······························································8分20.(本题满分10分)解:(1)将点A(1,2)代入y=mx,得m=2,∴双曲线的表达式为:y=
2x,···············································1分把A(1,2)和B(4,0)代入y=kx+b得:y=240kbkb+=+=,解得:2383kb=−=,········
·································3分∴直线的表达式为:y=23−x+83;·········································4分(2)联立2283
3yxyx==−+,解得12xy==,或323xy==,·························5分∵点A的坐标为(1,2),∴点B的坐标为(3,23),······················
·························6分∵S△AOB=S△AOB—S△AOB=12OC·Ay—12OC·By=12×4×2—12×4×23=83,∴△AOB的面积为83;··················
·································8分(3)1<m<3.····························································10分21
.(本题满分10分)解:(1)12099························································4分(2)如图:··············8分(3)把“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校
本课程分别记为A、B、C、D、E,画树状图如下:共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有5种,∴小刚和小强两人恰好选到同—门课程的概率P=51255=.······························
··············10分22.(本题满分10分)解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:····················2分由题意知,EG=BF=40米,EF=B
G=12.88米,∠HAE=16°=∠AEG=16°,∠CAH=9°,在Rt△AEG中,tan∠AEG=AGEG,∴tan16°=40AG,即0.287≈40AG,···························
·················4分∴AG=40×0.287=11.48(米),∴AB=AG+BG=11.48+12.88=24.36(米),····································6分∴HD=AB=24.36米,在Rt△ACH中,AH=BD=BF+
FD=80米,tan∠CAH=CHAH,∴tan9°=80CH,即0.158≈80CH,············································8分∴CH=80×0.158=12.64(米),∴CD=CH+HD=12.
64+24.36=37.00(米),则综合楼的高度约是37.00米.·············································10分注:结果精确到0.01米,须保留两位小数,未保留最后一步不得分!23.(本题满分12分)解:(1)证明:由题意得,AI、BI分别
平分∠BAC、∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,············································2分又∵∠CAD=∠CBD,∴∠BAD=∠CBD,∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+
∠CBD,∴∠BID=∠IBD,∴BD=DI;·······························································4分22题答案图24题(2)答案图(2)证明:如图,连接OD,
∵∠CAD=∠BAD,∴BDCD=,∴OD⊥BC,·······································5分∵DE∥BC,∴OD⊥DE,···········································
···················6分∴DE是⊙O的切线;·······················································7分(3)证明:如图,连接BH,CH,∵GH是⊙O的切线,∴∠CHG=∠HBG,·······
······················8分∵∠CGH=∠BGH,∴△HCG∽△BHG,∴GH2=BG•CG,···························································9分∵AD∥GF,∴∠AFG=∠CAD,∵∠CAD=∠F
BG,∴∠FBG=∠AFG,·····································10分∵∠CGF=∠BGF,∴△CGF∽△FGB,∴FG2=BG•CG,···················································
·······11分∴FG=HG.······························································12分24.(本题满分12分)解:(1)∵抛物线的顶点D(1,4)∴
根据顶点式,抛物线的解析式为y=—(x—1)2+4=—x2+2x+3;············2分(2)如图,设直线l交x轴于点T,连接PT,BD,BD交PM于点J.设P(m,—m2+2m+3).···························3分点D(1,4)在直线
l:y=43x+t上,∴4=43x+t,∴t=83,∴直线DT的解析式为y=43x+83,···········································4分23题(2)答案图23题(3)答案图24题(3)答案图令y=0,得到x=—2,∴T(—2,0),∴OT=2,∵
B(3,0),∴OB=3,∴BT=5,························································5分∵DT=2234+=5,∴TD=TB,∵PM⊥BT,PN⊥DT,∴S四边形DTBP=S△PDT+S△PBT=12×DT×
PN+12×TB×PM=(PM+PN),∴四边形DTBP的面积最大时,PM+PN的值最大,········································································6分∵D(1,4),B(3,0),∴直
线BD的解析式为y=—2x+6,···········································7分∴J(m,—2m+6),∴PJ=—m2+4m—3,∵S四边形DTBP=S△DTB
+S△BDP=12×5×4+12×(—m2+4m—3)×2=—m2+4m+7=—(m—2)2+11∵—1<0,∴m=2时,四边形DTBP的面积最大,最大值为11,∴PM+PN的最大值=25×11=225;·······················
···················8分(3)四边形AFBG的面积不变.理由:如图,设P(m,—m2+2m+3),················9分∵A(—1,0),B(3,0),∴直线AP的解析式为y=—(m—3)x—m+3,··········10分
∴E(1,—2m+6),·∵E,G关于x轴对称,∴G(1,2m—6),∴直线PB的解析式y=—(m+1)x+3(m+1),································11分∴F(1,2m+2),∴GF=2m+2—(2m—6)=8,∴四边形AF
BG的面积=12×AB×FG=12×4×8=16.∴四边形AFBG的面积是定值.············································12分数学试题参考解析一、选择题1.【答案
】A【解析】∵实数a的相反数是—1,∴a=1,∴a+1=2.2.【答案】D【解析】A选项不是中心对称图形,也不是轴对称图形,故此选项不合题意;B选项不是中心对称图形,是轴对称图形,故此选项不合题意;C选项不是中心对称图形,是轴对称图形,故此选项不合题意;D选项既
是轴对称图形,又是中心对称图形,故此选项符合题意.3.【答案】C【解析】因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组
成一个四字成语,故B不符合题意;因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一个四字成语金榜题名,故C符合题意;因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意.4.【答案】D【解析】中位数为第10个和第11个的平均数
15152+=15,众数为15.5.【答案】B【解析】∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=12∠DFE=12×50°=25°.6.【答案】A【解析
】A选项≈3.1416,B选项≈3.1408,C选项≈3.14,D选项≈3.1428,π≈3.14159≈3.1416,A选项符合题意.7.【答案】C【解析】连接AD,如图,∵AB=AC,∠A=120°,∴∠B=∠C=30°,由作法得DE垂直平分
AC,∴DA=DC=3,∴∠DAC=∠C=30°,∴∠BAD=120°—30°=90°,在Rt△ABD中,∵∠B=30°,∴BD=2AD=6.8.【答案】C【解析】原式=4a6b2—3a6b2=a6b2,9.【答案】D【分析】设第二次采购单价为x元,则第一次采购单价为(x+10)元,根据单价=总
价÷数量,结合总费用降低了15%,采购数量与第一次相同,即可得出:2000020000(115%)10xx−=+10.【答案】【解析】连接AC交BD于O,如图,∵四边形ABCD为菱形,∴AD∥BC,CB=CD=AD=4,AC⊥AB,BO=OD,O
C=AO,∵E为AD边的中点,∴DE=2,∵∠DEF=∠DFE,∴DF=DE=2,∵DE∥BC,∴∠DEF=∠BCF,∵∠DFE=∠BFC,∴∠BCF=∠BFC,∴BF=BC=4,∴BD=BF+DF=4
+2=6,∴OB=OD=3,在Rt△BOC中,OC=2243−=7∴AC=2OC=27∴菱形ABCD的面积=12AC·BD=12×2×6=6711.【答案】A【解析】∵二次函数y=ax2+2的图象经过P(1,3),∴3=a+2,∴a=1,∴
y=x2+2,∵Q(m,n)在y=x2+2上,∴n=m2+2,∴n2—4m2—4n+9=(m2+2)2—4m2—4(m2+2)+9=m4—4m2+5=(m2—2)2+1,∵(m2—2)≥0,∴n2—4m2—4
n+9的最小值为1.12.【答案】B【解析】如图,连接AI,BI,CI,DI,过点I作IT⊥AC于点T.∵I是△ABD的内心,∴∠BAI=∠CAI,∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,∵∠ITD=∠IE
D=90°,∠IDT=∠IDE,DI=DI,∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,∵∠BEI=∠CTI=90°,∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,设BE=CT=x,∵DE=DT,∴10—x=x—4,∴x
=7,∴BE=7.二、填空题13.【答案】a≥5【解析】∵a-5≥0,∴a≥5.14.【答案】x(x+3)(x—3)【解析】原式=x(x2-9)=x(x+3)(x—3).15.【答案】(1,3)【解析】∵点
A(—3,4)的对应点是A1(2,5),∴点B(—4,2)的对应点B1的坐标是(1,3).16.【答案】—2【解析】原式=22222(1)1111xxxxxxx−−−−==−−−−=—2.17.【答案】(—2023,2022
)【解析】∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(-3,2),D3(-3
,-4),D4(5,-4),D5(5,6),D6(-7,6),……,观察发现:每四个点一个循环,D4n+2(-4n-3,4n+2),∵2022=4×505+2,∴D2022(-2023,2022).获得更多资源请扫码加入享学资源网微信公众号w
ww.xiangxue100.com