【文档说明】《浙江中考真题数学》2011年浙江省宁波市中考数学试卷含答案.docx,共(27)页,477.159 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-ea542674f0c7c14def64817860e2fc82.html
以下为本文档部分文字说明:
2011年浙江省宁波市中考数学试卷一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中是正整数的是()A.﹣1B.2C.0.5D.2.(3分)下列计算正确的是()A.(a2)3=a6B.a2+a2=a4C.(3
a)•(2a)2=6aD.3a﹣a=33.(3分)不等式x>1在数轴上表示为()A.B.C.D.4.(3分)据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为()A.7.6057×105人B.7.6057×106人C.7.6
057×107人D.0.76057×107人5.(3分)平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)6.(3分)如图所示物体的俯视
图是()A.B.C.D.7.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.78.(3分)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A.57°B.60°C.63°D.123°9.(
3分)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A.B.C.D.h•sinα10.(3分)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为()
A.4πB.4πC.8πD.8π11.(3分)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有
一个公共点的情况一共出现()A.3次B.5次C.6次D.7次12.(3分)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A
.4mcmB.4ncmC.2(m+n)cmD.4(m﹣n)cm二、填空题(每小题3分,共18分)13.(3分)实数27的立方根是.如果点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为.14.(3分)因式分解:xy
﹣y=.15.(3分)甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手甲乙丙平均数9.39.39.3方差0.0260.0150.032则射击成绩最稳定的选手是.(填“甲”、“乙”、“丙”中的一个)16
.(3分)抛物线y=x2的图象向上平移1个单位,则平移后的抛物线的解析式为.17.(3分)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=.18.(3分)正方形的A1B1P1P2顶点P1、P2在反比例函数
y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为.三、解答题(本大题共8小题,共66分)19.(6分)先化简,再求
值:(a+2)(a﹣2)+a(1﹣a),其中a=5.20.(6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的
概率.21.(6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)22.(8分)图①表示的是某综合商场
今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(
2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.23.(8分)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=
90°,求证:四边形DEBF是菱形.24.(10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活
率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.25.(10分)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义
,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B
重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.26.(12分)如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O
、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接
ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.2011年浙江省宁波市中考数学试卷参考答案与试题解析
一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中是正整数的是()A.﹣1B.2C.0.5D.【分析】根据实数的分类:,可逐一分析、排除选选项,解答本题;【解答】解:A、﹣1是负整数;故本选项错误;B、2是正整数
,故本选项正确;C、0.5是小数,故本选项错误;D、是无理数,故本选项错误;故选:B.【点评】本题主要考查了实数的定义,要求掌握实数的范围以及分类方法.2.(3分)下列计算正确的是()A.(a2)3=a6B.a2+a2=a4C.(3a)•(2a)2=6aD.3a﹣a=3【分析】根
据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a2×3=a6,故本选项正确;B、应为a2+a2=2a2,故本选项错误;C、应为(3a)•(2a)2=(3a)•(4a2)=1
2a1+2=12a3,故本选项错误;D、应为3a﹣a=2a,故本选项错误.故选:A.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(3分)不等式x>1在数轴上表示为()A.B.C.D.【分析】根据数轴上的点与实数一一
对应,即可得到不等式x>1的解集在数轴上表示为在表示数1的点的右边的点表示的数.【解答】解:∵x>1,∴不等式x>1的解集在数轴上表示为在表示数1的点的右边,故选:C.【点评】本题考查了利用数轴表示不等式解集得方法:对于x>a,在数轴表示为数a表示的点的右边部分.4.(3分)据
宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为()A.7.6057×105人B.7.6057×106人C.7.6057×107人D.0.76057×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,由
760.57万=7605700共有7位,所以,n=7﹣1=6.【解答】解:∵760.57万=7605700,∴7605700=7.6057×106.故选:B.【点评】本题考查科学记数法的表示方法.科学记数
法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣
2)C.(﹣2,3)D.(2,3)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:点(2,﹣3)关于原点中心对称的点的坐标是(﹣2,3).故选:C.【点评】本题考查了平面直角坐标系中任意一点P(x,
y),关于原点的对称点是(﹣x,﹣y),比较简单.6.(3分)如图所示物体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面向下看,易得到横排有3个正方
形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图.7.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•1
80°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.8.(3分)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A.57°B.60°C.63°D.123°
【分析】根据三角形内角和为180°,以及对顶角相等,再根据两直线平行同旁内角互补即可得出∠EAB的度数.【解答】解:∵AB∥CD,∴∠A=∠C+∠E,∵∠E=37°,∠C=20°,∴∠A=57°,故选:A.【点评】本题考查了
三角形内角和为180°,对顶角相等,以及两直线平行同旁内角互补,难度适中.9.(3分)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A.B.C.D.h•sinα【分析】由已知转化为解直角三角形问题,角α的正弦等于对边比斜边求出滑梯
长l.【解答】解:由已知得:sinα=,∴l=,故选:A.【点评】此题考查的知识点是解直角三角形的应用﹣坡度较问题,关键是把实际问题转化为解直角三角形.10.(3分)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直
线旋转一周,则所得几何体的表面积为()A.4πB.4πC.8πD.8π【分析】所得几何体的表面积为2个底面半径为2,母线长为2的圆锥侧面积的和.【解答】解:∵Rt△ABC中,∠ACB=90°,AC=BC=2,∴AB=4,∴所得圆锥底面
半径为2,∴几何体的表面积=2×π×2×2=8π,故选:D.【点评】考查有关圆锥的计算;得到所得几何体表面积的组成是解决本题的突破点;用到的知识点为:圆锥的侧面积=π×底面半径×母线长.11.(3分)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O
1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现()A.3次B.5次C.6次D.7次【分析】根据⊙O1的半径为1
,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,设O1O2交圆O于M,求出PM=4,得出圆O1与以P为圆心,以4为半径的圆相外切,即可得到答案.【解答】解:∵⊙O1的半径为1,正
方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,设O1O2交圆O于M,∴PM=8﹣3﹣1=4,圆O1与以P为圆心,以4为半径的圆相外切,∴根据图形得出有5次.故选:B.【点评
】本题主要考查对直线与圆的位置关系,正方形的性质等知识点的理解和掌握,能求出圆的运动路线是解此题的关键.12.(3分)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(
如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcmB.4ncmC.2(m+n)cmD.4(m﹣n)cm【分析】本题需先设小长方形卡片的长为a,宽为b,再结合图形得出上面的阴
影周长和下面的阴影周长,再把它们加起来即可求出答案.【解答】解:设小长方形卡片的长为a,宽为b,∴L上面的阴影=2(n﹣a+m﹣a),L下面的阴影=2(m﹣2b+n﹣2b),∴L总的阴影=L上面的阴影+L下面的阴影=2(n﹣a+m﹣a)+2(
m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),又∵a+2b=m,∴4m+4n﹣4(a+2b),=4n.故选:B.【点评】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.二、填空题(每小题3分,共18分)13.(3分)实数27的立方根是
3.如果点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为﹣4.【分析】找到立方等于27的数即为27的立方根,根据两点关于原点对称,横纵坐标均为相反数即可得出结果.【解答】解:∵33=27,∴27的立方根是3,
∵点P(4,﹣5)和点Q(a,b)关于原点对称,∴a=﹣4,b=5,故答案为:3,﹣4.【点评】本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算,以及在平面直角坐标系中,两点关于原点对称,横纵坐标均为相反数,难度适中.14.(3分)因式分解:xy﹣y=
y(x﹣1).【分析】先找公因式,代数式xy﹣y的公因式是y,提出y后,原式变为:y(x﹣1).【解答】解:∵代数式xy﹣y的公因式是y,∴xy﹣y=y(x﹣1).故答案为:y(x﹣1).【点评】本题考查了提公因式法因式分解,步骤:①找出公因式;②提公因式并确定另一个因式;解答
过程中注意符号的变化.15.(3分)甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手甲乙丙平均数9.39.39.3方差0.0260.0150.032则射击成绩最稳定的选手是乙.(填“甲”、“乙”、“丙”中的一个)【分析】从统计表可以看出甲、乙、丙三位选手的平均数相同,进一步
比较方差,方差小的数据的比较稳定,由此解决问题即可.【解答】解:因为0.015<0.026<0.032,即乙的方差<甲的方差<丙的方差,因此射击成绩最稳定的选手是乙.故答案为:乙.【点评】此题主要利用方差来判定数据的波动性,方差越小,数据越稳定.16.(3分)抛物线y=x2的图象向
上平移1个单位,则平移后的抛物线的解析式为y=x2+1.【分析】函数y=x2的图象向上平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新函数.【解答】解:∵抛物线y=x2的图象向上平移1个单位,∴平移后的抛物线的解析式为y=x2+1.故答案为:y=x2+1.【点评】
考查二次函数的平移问题;用到的知识点为:上下平移只改变顶点的纵坐标,上加下减.17.(3分)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=8cm.【分析】作出辅助线后根
据等腰三角形的性质得出BE=6cm,DE=2cm,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【解答】解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠E
BC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4cm,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2cm,∴BN=4cm,∴BC=2BN=8cm.故答案为:8cm.【
点评】此题主要考查了相似三角形的性质以及等腰三角形的性质和等边三角形的性质,根据得出MN的长是解决问题的关键.18.(3分)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧
作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为(+1,﹣1)..【分析】作P1C⊥y轴于C,P2D⊥x轴于D,P3E⊥x轴于E,P3F⊥P2D于F
,设P1(a,),则CP1=a,OC=,易得Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,则OB1=P1C=A1D=a,所以OA1=B1C=P2D=﹣a,则P2的坐标为(,﹣a),然后把P2的坐标代入反比例函数y=,得到a的方程,解方程求出a,得到P2的坐标;设P3的坐
标为(b,),易得Rt△P2P3F≌Rt△A2P3E,则P3E=P3F=DE=,通过OE=OD+DE=2+=b,这样得到关于b的方程,解方程求出b,得到P3的坐标.【解答】解:作P1C⊥y轴于C,P2D⊥x轴于D,P3E⊥
x轴于E,P3F⊥P2D于F,如图,设P1(a,),则CP1=a,OC=,∵四边形A1B1P1P2为正方形,∴Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,∴OB1=P1C=A1D=a,∴OA1=B1C=P2D=﹣a,∴OD=a+﹣a=,∴P2的坐
标为(,﹣a),把P2的坐标代入y=(x>0),得到(﹣a)•=2,解得a=﹣1(舍)或a=1,∴P2(2,1),设P3的坐标为(b,),又∵四边形P2P3A2B2为正方形,∴Rt△P2P3F≌Rt△A2P3E,∴P3E=P3F=DE=,∴OE=OD+DE=
2+,∴2+=b,解得b=1﹣(舍),b=1+,∴==﹣1,∴点P3的坐标为(+1,﹣1).故答案为:(+1,﹣1).【点评】本题考查了反比例函数图象上点的坐标特点为横纵坐标之积为定值;也考查了正方形的性质和三角形全等的
判定与性质以及解分式方程的方法.三、解答题(本大题共8小题,共66分)19.(6分)先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.【分析】先用平方差公式和单项式乘以多项式的方法将代数式化简,然后将a的值代入化简的代数式即可求出代数式的值.【解答】解:(a+2)(a﹣2)
+a(1﹣a)=a2﹣4+a﹣a2=a﹣4将a=5代入上式中计算得,原式=a﹣4=5﹣4=1【点评】本题主要考查代数式化简求值的方法:整式的混合运算、公式法、单项式与多项式相乘以及合并同类项的知识点.20.(6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1
个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.【分析】列举出所有情况,看两次都摸到红球的情况数占总情况数的多少即可.【解答】解:共有9种情况,两次都摸到红球的有1种情况.故概率为:.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数
之比.得到两次都摸到红球的情况数是解决本题的关键.21.(6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的
三个图形不能重复)【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:【点评】考查利用轴对称设计图案;选择不同的直线当对称轴是解决本题的突破点.22.(8分)图①表示的是某综合商场今年1~5月的商品各月销售总额的情
况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图
②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【分析】(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.
【解答】解:(1)410﹣(100+90+65+80)=410﹣335=75;如图:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.
8万元,故小刚的说法是错误的.【点评】本题是统计题,考查了条形统计图和折线统计图,是基础知识要熟练掌握.23.(8分)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:D
E∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.【分析】(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【解答
】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF;(2)∵∠G=90°,AG∥BD,AD∥BG
,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.【点评】本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等
于斜边一半,比较综合,难度适中.24.(10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使
这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.【分析】(1)根据关键描述语“购买甲、乙两种树苗共800株,”和“购买两种树苗共用21000
元”,列出方程组求解.(2)先找到关键描述语“这批树苗的成活率不低于88%”,进而找到所求的量的等量关系,列出不等式求出甲种树苗的取值范围.(3)再根据题意列出购买两种树苗的费用之和与甲种树苗的函数关系式,根据一次函数的特征求出
最低费用.【解答】解:(1)设购买甲种树苗x株,则乙种树苗y株,由题意得:解得答:购买甲种树苗500株,乙种树苗300株.(2)设甲种树苗购买z株,由题意得:85%z+90%(800﹣z)≥800×88%,解得z≤320.答:
甲种树苗至多购买320株.(3)设购买两种树苗的费用之和为m,则m=24z+30(800﹣z)=24000﹣6z,在此函数中,m随z的增大而减小所以当z=320时,m取得最小值,其最小值为24000﹣6×320=22080元答:购买甲种树苗320株,乙种树苗480株,即可
满足这批树苗的成活率不低于88%,又使购买树苗的费用最低,其最低费用为22080元.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.本题难点是求这批树苗的成活率不低于
88%时,甲种树苗的取值范围.25.(10分)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形
,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.【
分析】(1)根据“奇异三角形”的定义与等边三角形的性质,求证即可;(2)根据勾股定理与奇异三角形的性质,可得a2+b2=c2与a2+c2=2b2,用a表示出b与c,即可求得答案;(3)①AB是⊙O的直径,即可求得∠ACB=∠ADB=90°,然后利用勾股定理与圆的性质即可证得;
②利用(2)中的结论,分别从AC:AE:CE=1::与AC:AE:CE=::1去分析,即可求得结果.【解答】解:(1)设等边三角形的一边为a,则a2+a2=2a2,∴符合奇异三角形”的定义.∴是真命题;(2)∵∠C=90°,则a2+b2=c2①,∵Rt△A
BC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=a,c=a,∴a:b:c=1::;(3)∵①AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,AC2+BC2=AB2,在Rt△ADB中,AD2+BD2=A
B2,∵点D是半圆的中点,∴=,∴AD=BD,∴AB2=AD2+BD2=2AD2,∴AC2+CB2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2,∴△ACE是奇异三角形;②由①可得△ACE是奇异
三角形,∴AC2+CE2=2AE2,当△ACE是直角三角形时,由(2)得:AC:AE:CE=1::或AC:AE:CE=::1,当AC:AE:CE=1::时,AC:CE=1:,即AC:CB=1:,∵∠ACB=90°,∴∠ABC=30°
,∴∠AOC=2∠ABC=60°;当AC:AE:CE=::1时,AC:CE=:1,即AC:CB=:1,∵∠ACB=90°,∴∠ABC=60°,∴∠AOC=2∠ABC=120°.∴∠AOC的度数为60°或120°.【点评】此题考查了新定义的知识,勾股定理以及圆的
性质,三角函数等知识.解题的关键是理解题意,抓住数形结合思想的应用.26.(12分)如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交
y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△B
ON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.【分析】(1)根据A、B两点坐标求直线AB的解析式,令x=0,可求E点坐标;(2)设抛物线解析式为y=ax2+bx+c
,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,列方程组求a、b、c的值即可;(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,与抛物线解析式联立,得出关于x的一元二
次方程,当△=0时,△BON面积最大,由此可求m的值及N点的坐标;(4)根据三角形相似的性质得到BO:OA=OP:AN=BP:ON,然后根据勾股定理分别计算出BO=6,OA=2,AN=,ON=,这样可求出OP=,BP=,设P点坐标为(x,y),再利用勾股定理得到关于x,y的
方程组,解方程组即可.【解答】解:(1)设直线AB解析式为y=kx+b,将A(﹣2,2),B(6,6)代入,得,解得,∴y=x+3,令x=0,∴E(0,3);(2)设抛物线解析式为y=ax2+b′x+
c,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,得,解得,∴y=x2﹣x(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,联立,得x2﹣6x﹣4m=0,当△=36+16m=0时,过N点与OB平行的直
线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大,解得m=﹣,x=3,y=,即N(3,);此时△BON面积=×6×6﹣(+6)×3﹣××3=;(4)过点A作AS⊥GQ于S,∵A(﹣2,2),B
(6,6),N(3,),∵∠AOE=∠OAS=∠BOH=45°,OG=3,NG=,NS=,AS=5,在Rt△SAN和Rt△NOG中,∴tan∠SAN=tan∠NOG=,∴∠SAN=∠NOG,∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,∴∠OAN=∠NOB,∴ON的延长线上存
在一点P,使得△BOP∽△OAN,∵A(﹣2,2),N(3,),∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN,∴BO:OA=OP:AN=BP:ON又∵A(﹣2,2),N(3,),B(6,6),
∴BO=6,OA=2,AN=,ON=,∴OP=,BP=,设P点坐标为(4x,x),∴16x2+x2=()2,解得x=,4x=15,∵P、P′关于直线y=x轴对称,∴P点坐标为(15,)或(,15).【点评】本
题考查了二次函数的综合运用.根据已知条件求直线、抛物线解析式,再根据图形特点,将问题转化为列方程组,利用代数方法解题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/2/1711:32:26;用户:
18366185883;邮箱:18366185883;学号:22597006获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com