【文档说明】《山东中考真题数学》山东省威海市2021年中考数学真题(解析版).docx,共(28)页,1.158 MB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-e5e0b0539cdb5c358fa389dceafe9dd9.html
以下为本文档部分文字说明:
2021年山东省威海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.﹣15的相反数是()A.﹣5B.5C.﹣1
5D.15【答案】D【解析】【分析】互为相反数的两个数和为零,据此即可解题.【详解】∵(15−)+15=0∴15−的相反数为15.故选D.点睛:此题主要考查了求一个数的相反数,关键是明确相反数的概念.2.据光明日报网,中国科学技术大学的潘建伟、陆朝阳等人构建了一台76个光子100个模
式的量子计算机“九章”.它处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍.也就是说,超级计算机需要一亿年完成的任务,“九章”只需一分钟.其中一百万亿用科学记数法表示为()A.121010B.141010C.14110D.15110【答案】C【解析】【分析
】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,
n是负数.【详解】解:一百万亿=100000000000000=14110,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若用
我们数学课本上采用的科学计算器计算sin3618',按键顺序正确的是()A.B.C.D.【答案】D【解析】【分析】根据计算器按键顺序计算即可.【详解】解:根据计算器的按键顺序可知,正确的按键顺序为D选项,故选:D.【点睛】本题主要考查用
计算器计算三角函数值,熟悉计算器的按键顺序是解题的关键.4.下列运算正确的是()A.236(3)9aa−=−B.235()aaa−=C.222(2)4xyxy−=−D.22445aaa+=【答案】B【解析】【分析】分
别根据积的乘方和幂的乘方运算法则、同底数幂的乘法、完全平方公式以及合并同类项的运算法则对各项进行计算后再判断即可.【详解】解:A.236(3)27aa−=−,原选项计算错误,不符合题意;B.235()aaa−=原选项计算正确,符合题意;C.222(2)44xyxxyy−=−+,
原选项计算错误,不符合题意;D.22245aaa+=,原选项计算错误,不符合题意;故选:B.【点睛】此题主要考查了积的乘方和幂的乘方、同底数幂的乘法、完全平方公式以及合并同类项,熟练掌握相关运算法则是解答此题的关键.5.如图所示的几何体是由5个大小相同的小
正方体搭成的.其左视图是()A.B.C.D.【答案】A【解析】【分析】根据左视图是从左面看到的图形进而得出答案.【详解】从左面看,易得下面一层有3个正方形,上面一层中间有一个正方形,∴该几何体的左视图是:.故选A.【点睛】本题考查了三视图的知识,左
视图是从物体的左面看得到的视图.6.某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡时间,统计结果如表:时间/小时78910人数69114这些学生睡眠时间的众数、中位数是()A.众数是11,中位数是8.5B.众数是9,中位数是8.5C.众数是9,中位
数是9D.众数是10,中位数是9【答案】B【解析】【分析】根据众数和中位数的定义,即可求解.【详解】解:睡眠时间为9小时的人数最多,学生睡眠时间的众数是9小时,一共有30个学生,睡眠时间从小到大排序后,第15、
16个数据分别是:8,9,即:中位数为8.5.故选B.【点睛】本题主要考查中位数和众数,熟练掌握中位数和众数的定义,是解题的关键.7.解不等式组311223(21)8xxxx−−−−①②时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.【答案】A【解
析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解不等式①得:x>−3,解不等式②得:x≤-1,∴不等式组的解集为-3<x≤-1,将不等式组的解集表示在数轴上如下:故选A.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式
的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.8.在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为()A.
625B.925C.310D.35【答案】C【解析】【分析】通过列举的方法将所有可能的情况一一列举,进而找出小球上的数字都是奇数的情况即可求出对应概率.【详解】所有可能出现的情况列举如下:(1,2);(1,3);(1,4);(1,5)(2,3
);(2,4);(2,5)(3,4);(3,5)(4,5)共10种情况,符合条件的情况有:()1,3;()1,5;()3,5;共3种情况;小球上的数字都是奇数的概率为310,故选:C.【点睛】本题主要考查了简单概率的求解方法,通过列举法列举出等
可能的情况是解决本题的关键.9.如图,在平行四边形ABCD中,3AD=,2CD=.连接AC,过点B作//BEAC,交DC的延长线于点E,连接AE,交BC于点F.若2AFCD=,则四边形ABEC的面积为()A.5B.25C.6D.213【答案】B【解析】【分析】先证明四边形ABEC为矩形,再求
出AC,即可求出四边形ABEC的面积.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=2,BC=AD=3,∠D=∠ABC,∵//BEAC,∴四边形ABEC为平行四边形,∵2AFCD=,∴2AFCABC=,∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF
,∴AF=BF,∴2AF=2BF,即BC=AE,∴平行四边形ABEC是矩形,∴∠BAC=90°,∴2222325ACBCAB=−=+=,∴矩形ABEC的面积为25ABAC=.故选:B【点睛】本题考查了平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟知相关定理,证明四边形ABEC为矩形是解
题关键.10.一次函数()1110ykxbk=+与反比例函数()2220kykx=的图象交于点(1,2)A−−,点(2,1)B.当12yy时,x的取值范围是()A.1x−B.10x−或2xC.0
2xD.02x或1x−【答案】D【解析】【分析】先确定一次函数和反比例函数解析式,然后画出图象,再根据图象确定x的取值范围即可.【详解】解:∵两函数图象交于点(1,2)A−−,点(2,1)B∴112=12kbkb−−+=+,221k−=−,解
得:1=11kb=−,k2=2∴11yx=−,22yx=画出函数图象如下图:由函数图象可得12yy的解集为:0<x<2或x<-1.故填D.【点睛】本题主要考查了运用待定系数法求函数解析式以及根据函数图象确定不等式的解集,根据题意确定函数解析式成
为解答本题的关键.11.如图,在ABC和ADE中,36CABDAE==,ABAC=,ADAE=.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分ABC,则下列结论错误的是()A.ADCA
EB=B.//CDABC.DEGE=D.2BFCFAC=【答案】C【解析】【分析】根据SAS即可证明DACEAB△≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36ABACAD
AECABDAE====DACEAB=DACEAB△≌△ADCAEB=,故选项A正确;,36ABACCAB==72ABCACB==BE平分ABC1362ABECBFABC===DACEAB△≌△36ACDABE==ACDCAB=//CD
AB,故选项B正确;,36ADAEDAE==72ADE=72DGEDAEEABABEEAB=++=+即ADEDGEDEGE,故选项C错误;72,36ABCACBCABCBF====72CFB=BCBF
=ABCBFC△∽△BFCFABBC=ABAC=BFCFACBF=2BFCFAC=,故选项D正确;故答案选:C.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.12.如
图,在菱形ABCD中,2cmAB=,60D=,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x
(s),APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】A【解析】【分析】先证明∠CAB=∠ACB=∠ACD=60°,再分0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.【
详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1,当0≤x≤1时,AQ=2x,AP=x,作PE⊥AB于E,∴3sin2PEAPPAEx==,∴21332222yxxx=
=,故D选项不正确;如图2,当1<x≤2时,CP=2-x,CQ=4-2x,BQ=2x-2,作PF⊥BC与F,作QH⊥AB于H,∴()3sin22PFCPPCFx==−,()()3sin22312QHBQBxx==−=−,∴()()()22
311332231422342222yxxxxx=−−−−−=−+,故B选项不正确;当2<x≤3时,CP=x-2,CQ=2x-4,∴PQ=x-2,作AG⊥CD于G,∴3sin232AGACACD===,∴()1323322yxx=−=−
,故C不正确.故选:A【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.计
算624455−的结果是____________________.【答案】6−【解析】【分析】根据二次根式的四则运算法则进行运算即可求解.【详解】解:原式626355=−2636=−6=−,故答案为:6−.【
点睛】本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可求解.14.分解因式:32218xxy−=________________.【答案】()()233xxyxy+−【解析】【分析】先提公因式,再
利用平方差公式即可分解.【详解】解:()()()322221829=233xxyxxyxxyxy−=−+−.故答案为:()()233xxyxy+−【点睛】本题考查了整式的因式分解,因式分解的一般步骤是“一提二看三检查”,熟知提公因式法和乘法公式是解题关键.15.如图,在ABC中,90BAC
,分别以点A,B为圆心,以大于12AB长为半径画弧,两弧交于点D,E.作直线DE,交BC于点M.分别以点A,C为圆心,以大于12AC长为半径画弧,两弧交于点F,G.作直线FG,交BC于点N.连接AM,AN.若BAC=,则MAN=___________
_.【答案】2-180°【解析】【分析】先根据作图可知DE和FG分别垂直平分AB和AC,再利用线段的垂直平分线的性质得到∠B=∠BAM,∠C=∠CAN,即可得到∠MAN的度数.【详解】解:由作图可知,DE和FG分别垂直平分AB和AC,∴MB=MA,NA=N
C,∴∠B=∠MAB,∠C=∠NAC,在△ABC中,BAC=,∴∠B+∠C=180°−∠BAC=180°−,即∠MAB+∠NAC=180°−,则∠MAN=∠BAC−(∠MAB+∠NAC)=−(180°−)=2-180°.故答案是:2-180
°.【点睛】此题主要考查线段的垂直平分线的性质以及三角形内角和定理.解题时注意:线段的垂直平分线上的点到线段的两个端点的距离相等.16.已知点A为直线2yx=−上一点,过点A作//ABx轴,交双曲线4yx=于点B.若点A与点B关于
y轴对称,则点A的坐标为_____________.【答案】(222)−,或(222)−,【解析】【分析】设点A坐标为(2)xx−,,则点B的坐标为(2)xx−−,,将点B坐标代入4yx=,解出x的值即可求得A点坐标.【详解】解:∵点A为直线2yx=−上一点,∴设点A坐标为(2)xx−,,则点
B的坐标为(2)xx−−,,∵点B在双曲线4yx=上,将(2)xx−−,代入4yx=中得:42xx−=−,解得:2x=,当2x=时,222yx=−=−,当2x=−时,222yx=−=,∴点A的坐标为(222)−,或(222)−,,
故答案为:(222)−,或(222)−,.【点睛】本题主要考查一次函数与反比例函数综合问题,用到了关于一条直线的两个点的坐标关系,熟知对称点坐标的关系是解决问题的关键.17.如图,先将矩形纸片ABCD
沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若AEF=,纸片宽2cmAB=,则HE=__________cm.【答案】1sincos【解析】【分析】根据题意,证明四边形GHEF是平行四边形,运用AEF的正弦和
余弦的关系,求出HE.【详解】如图,分别过GE、作,GMHEENGH⊥⊥,垂足分别为MN、则2GM=根据题意,AEF=,因为折叠,则FEP=四边形ABCD是矩形//GFHEGFE=GFGE=同理HEGE=
四边形GHEF是平行四边形GHE=ENGH⊥,HEGE=12HNNGHG==sinsinGMGHMHG==2sinHG=RtHNE△中,cos=cosHNNHEHE=cosHNHE=111sin2=coscossincosHG==故答案为:1si
ncos.【点睛】本题考查了轴对称图形,平行四边形的性质与判定,锐角三角函数,理解题意作出辅助线,是解题的关键.18.如图,在正方形ABCD中,2AB=,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若AEBF=,则BG的
最小值为__________________.【答案】51−.【解析】【分析】根据SAS证明△DEA≌△AFB,得∠ADE=∠BAF,再证明∠DGA=90°,进一步可得点G在以AD为直径的半圆上,且O,G,B三点共线时BG取得最小值.【详解】解:∵四边形ABCD是
正方形,∴∠ABC-∠DAE,AD=AB,∵AE=BF∴△DEA≌△AFB,,ADEBAF=∴∠DAF+∠BAF=∠DAB=90°,∠ADE+∠DAF=90°∴∠DGA=90°∴点G在以AD为直径的圆上移动,连接OB,OG,如图:∴112OAO
DOGAD====在Rt△AOB中,∠OAB=90°∴OB=22125+=∵BGOOBG−∴当且公当O,G,B三点共线时BG取得最小值.∴BC的最小值为:51−.【点睛】此题主要考查了全等三角形的判定与性质,正方形的性质,三角形三边关系,圆周角定理等相关知识,正确引出辅助线解决问
题是解题的关键.三、解答题(本大题共7小题,共66分)19.先化简2211(1)369aaaaaa−+−−−−+,然后从1−,0,1,3中选一个合适的数作为a的值代入求值.【答案】2(a-3),当a=0
时,原式=-6;当a=1时,原式=-4.【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a的值,继而代入计算可得答案.【详解】2211(1)369aaaaaa−+−−−
−+=()()()221311333aaaaaaa+−−+−−−−=()2223123331aaaaaaa−−−−−−−+=()222312331aaaaaa−−−++−+=()()221331aaaa+−−+=2
(a-3),∵a≠3且a≠-1,∴a=0,a=1,当a=0时,原式=2×(0-3)=-6;当a=1时,原式=2×(1-3)=-4.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法
则.20.某校为提高学生的综合素养,准备开展摄影、书法、绘画、表演、手工五类社团活动.为了对此项活动进行统筹安排,随机抽取了部分学生进行调查,要求每人从五个类别中只选择一个,将调查结果绘制成了两幅统计图(未完成).请根
据统计图中的信息,解答下列问题:(1)本次共调查了名学生;(2)请将条形统计图补充完整;(3)扇形统计图中,“摄影”所占的百分比为;“手工”所对应的圆心角的度数为.(4)若该校共有2700名学生,请估计选择“绘画”的学生人数.【答案】(1)600;(2)见
详解图;(3)15%;36;(4)675人【解析】【分析】(1)根据书法总人数180人,占调查总数的30%,可求出调查总人数;(2)求出表演和手工的总人数,补全条形图即可;(3)用摄影的总人数除以调查的总人数即可求出摄影所占百分比,再用手工总人数除以调查总人数得出手工所占
百分比再乘以360即可求出手工所对应的扇形圆心角的度数;(4)求出绘画所占百分比再乘以该校总人数即可.【详解】(1)18030%600=(人)(2)表演的人数为60020%120=(人),手工的人数为600901801501
2060−−−−=(人),补全条形图如下:(3)摄影所占百分比为:90100%15%600=;手工所对应的圆心角度数为:6036036600=(4)由样本估计总体得1502700675600=(人)答:该校2700名学生,估计选择“
绘画”的学生人数为675人.【点睛】本题考查了条形统计图,扇形统计图,理解两个统计图中数量之间的关系是解题关键.21.六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次
少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?【答案】(1)第一次每件的进价为50元;(2)两次的总利润为1700元.【解析】【分析】(1)设第
一次每件的进价为x元,则第二次进价为(1+20%)x,根据等量关系,列出分式方程,即可求解;(2)根据总利润=总售价-总成本,列出算式,即可求解.【详解】解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据题意得:()300030001200%1x
x+−=,解得:x=50,经检验:x=50是方程的解,且符合题意,答:第一次每件的进价为50元;(2)()706000120%5030003000170050−+=+(元),答:两次的总利润为1700元.【点睛】本题主要考查分式
方程的实际应用,找准等量关系,列出分式方程,是解题的关键.22.在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10,再沿BN方向前
进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin100.17,cos100.98,tan100.18,sin270.45=,cos270.89
,tan270.51)【答案】路灯的高度为13.4m.【解析】【分析】延长AC交PQ于点E,交MN于点F,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=
27°,AC=10,AE=BQ=EF=QN,设路灯的高度为xm,则MN=PQ=xm,MF=PE=x-1.2;在Rt△AFM中求得1.2tan10xFA−=,即可得1.22tan10xAE−=;在Rt△CEP中,可得1.2tan271.22tan10
01xx−=−−,由此即可求得路灯的高度为13.4m.【详解】延长AC交PQ于点E,交MN于点F,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN,设路灯的高度为xm,则MN=PQ=
xm,MF=PE=x-1.2,在Rt△AFM中,∠MAF=10°,MF=x-1.2,tanMFMAFFA=,∴1.2tan10xFA−=,∴1.2tan10xFA−=,∴111.21.222tan102tan10xxAEAF−−===;∴CE=AE-AC=1.22tan10x−
-10,在Rt△CEP中,∠PCE=27°,CE=1.22tan10x−-10,tanPEPCECE=,∴1.2tan271.22tan1001xx−=−−,解得x≈13.4,∴路灯的高度为13.4m.答:路灯的高度为13.4m.【点睛】本题考查了解直角三角形的应用,构造直角三角形,
熟练运用三角函数解直角三角形是解决问题的关键.23.如图,AB是O直径,弦CDAB⊥,垂足为点E.弦BF交CD于点G,点P在CD延长线上,且PFPG=.(1)求证:PF为O切线;(2)若10OB=,1
6BF=,8BE=,求PF的长.【答案】(1)见解析;(2)5【解析】【分析】(1)连接OF,根据等腰三角形的性质可得∠PFG=∠PGF,∠OBF=∠OFB,再证明∠OFB+∠PFG=90°,即可得∠PFO=90°,由此证得PF为O切线;(2)连接AF,过点P作PNFG⊥于点N,由
AB是O直径,可得∠AFB=90°,在Rt△ABF中求得AF=12,再由tanAFEGFBAFBBE==,可得12168EG=,求得EG=6;在Rt△BEG中求得BG=10;再根据等腰三角形性质可得FN=NG=3,再证明△PNF∽△
BEG,根据相似三角形的性质即可求得PF=5.【详解】(1)连接OF,∵PFPG=,∴∠PFG=∠PGF,∵OB=OF,∴∠OBF=∠OFB,∵CDAB⊥,∴∠GEB=90°,∴∠ABF+∠EGB=90°,∵∠EGB=∠PGF,∴∠OFB+∠PFG=90°,
∴∠PFO=90°,∴PF为O切线;(2)连接AF,过点P作PNFG⊥于点N,∵AB是O直径,∴∠AFB=90°,∵OB=10,∴AB=20,在Rt△ABF中,AB=20,16BF=,∴AF=12,∵t
anAFEGFBAFBBE==,∴12168EG=,∴EG=6,在Rt△BEG中,8BE=,EG=6,∴BG=10,∴FG=FB-BG=16-10=6,∵PFPG=,PNFG⊥,∴FN=NG=3,∠PNF=90°,∵∠PFG=∠PGF=∠
EGB,∠PNF=∠GEB=90°,∴△PNF∽△BEG,∴PFFNBGEG=,∴3106PF=,∴PF=5.【点睛】本题考查了切线的判定定理、等腰三角形的性质、三角函数及相似三角形的判定与性质,熟练运用相关知识是解决问题的关键.24.在平面
直角坐标系中,抛物线2222yxmxmm=++−的顶点为A.(1)求顶点A的坐标(用含有字母m的代数式表示);(2)若点()2,BBy,()5,CCy在抛物线上,且BCyy,则m的取值范围是;(直接写出结果即可)(3)当13x时,函数y的
最小值等于6,求m的值.【答案】(1)顶点A的坐标为2(,)mmm--;(2)72m−;(3)1414m−+=或2−【解析】【分析】(1)将抛物线解析式化成22()yxmmm=++−的形式,即可求得顶点A的坐标;(2)将()2,B
By,()5,CCy代入抛物线中求得By和Cy的值,然后再解不等式即可求解;(3)分类讨论,分对称轴在1的左侧、对称轴在3的右侧、对称轴在1,3之间共三种情况分别求出函数的最小值,进而求出m的值.【详解】解:(1
)由题意可知:抛物线222222()yxmxmmxmmm=++−=++−,∴顶点A的坐标为2(,)mmm--;(2)将()2,BBy代入2222yxmxmm=++−中,得到2222222234Bymmmmm=++−=++,将()5,CCy代入2222y
xmxmm=++−中,得到22252522925Cymmmmm=++−=++,由已知条件知:BCyy,∴222925234mmmm++++,整理得到:621m−,解得:72m−,故m的取值范围
是:72m−;(3)二次函数的开口向上,故自变量离对称轴越远,其对应的函数值越大,二次函数的对称轴为xm=−,分类讨论:①当1m−,即1m−时,1x=时二次函数取得最小值为22212221ymmmmm=++−=++,又已知二次函数最小值
为6,∴2216mm++=,解得1414m−+=或1414m−−=,又1m−,故1414m−+=符合题意;②当3m−,即3m−时,3x=时二次函数取得最小值为2223232259ymmmmm=++−=++,又已知二次函数最小值为6,∴22596m
m++=,解得32m=−或1m=−,又3m−,故32m=−或1m=−都不符合题意;③当13m??,即31m−−时,xm=时二次函数取得最小值为222222ymmmmmm=++−=−,又已知二次函数最
小值为6,∴26mm−=,解得3m=或2m=−,又31m−−,故2m=−符合题意;综上所述,1414m−+=或2−.【点睛】本题考查待定系数求二次函数的解析式,二次函数的最值问题,不等式的解法等,计算过程中细心
,熟练掌握二次函数的图形及性质是解决本题的关键.25.(1)已知ABC,ADE如图①摆放,点B,C,D在同一条直线上,90BACDAE==,45ABCADE==.连接BE,过点A作AFBD⊥,垂足
为点F,直线AF交BE于点G.求证:BGEG=.(2)已知ABC,ADE如图②摆放,90BACDAE==,30ACBADE==.连接BE,CD,过点A作AFBE⊥,垂足为点F,直线AF交CD于点G.求D
GCG的值.【答案】(1)见解析;(2)1【解析】【分析】(1)作EHFG⊥于H,根据题意证明ADFAEH≌,然后再证明EGHBGF≌,即可证明结论;(2)作DMAG⊥于M,CN垂直AG于N,根据题意证明AEFDAM∽,再证明ABFCAN∽,从而得出DM和CN的数量关系,最
后证明DMGCNG≌,即可得出结论.【详解】解:(1)如图,作EHFG⊥于H,根据题意可知ADE为等腰直角三角形,∴ADAE=,∵9090,HAEFADFADFDA+=+=,∴HAEFDA=,在ADF和AEH△中,90HAFDHAEF
DAADAE====,∴()ADFAEHAAS≌∴EHAF=,∵ABC为等腰三角形,AFBD⊥,∴AFBFFC==,∴BFEH=,在EGH和BGF中:90HBFGBGFEGHEHBF====,∴()EGHBGFAAS
≌,∴BGEG=;(2)作DMAG⊥于M,CN垂直AG于N,∵9090FAEFEADAMFAE+=+=,,∴DAMFEA=,∵90AFEDMA==,∵30ACBADE==∴AEFDAM∽,∴13AFAEDMAD==,即3DMAF=,同理可证ABFC
AN∽,∴13AFABCNCA==,即3CNAF=,∴DMCNDMCN=,∥,在DMG△和CNG△中:90DMGCNGDGMCGNDMCN====,∴()DMGCNGAAS≌,∴DGCG=,即1DGCG=.【点睛】本题主要考查等腰直角
三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,根据题意构建全等三角形是解决本题的关键.本题难度较大,属于中考压轴题.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com