【文档说明】《上海中考真题数学》2008年上海市中考数学试卷及答案.pdf,共(10)页,323.723 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-e227ae2e52254240853b4da212d39107.html
以下为本文档部分文字说明:
2008年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题:第一大题选择题含Ⅰ、Ⅱ两组选做题,Ⅰ组供使用一期课改教材的考生完成,Ⅱ组供使用二期课改教材的考生完成;其余大题为共做题;2.答题
时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题含Ⅰ、Ⅱ两组,每组各6题,每题4分,
满分24分)考生注意:1.请从下列Ⅰ、Ⅱ两组中选择一组,并在答题纸的相应位置填涂选定的组号,完成相应的1—6题.若考生没有填涂任何组号或将两个组号全部填涂,默认考生选择了Ⅰ组;2.下列各题的四个选项中,有且只有一
个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.Ⅰ组:供使用一期课改教材的考生完成1.计算23aa的结果是()A.5aB.6aC.25aD.26a2.如果2x是方程112xa的根,那么a的值是()A.0B.2C.2D.63.在平面直角坐标系中,直
线1yx经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限4.在平面直角坐标系中,抛物线21yx与x轴的交点的个数是()A.3B.2C.1D.05.如果12xx,是一元二次方程2620xx的两个
实数根,那么12xx的值是()A.6B.2C.6D.26.如图1,从圆O外一点P引圆O的两条切线PAPB,,切点分别为AB,.如果60APB,8PA,那么弦AB的长是()A.4B.8C.43D.83PBAO图1Ⅱ组:供使用二期
课改教材的考生完成1.计算23aa的结果是()A.5aB.6aC.25aD.26a2.如果2x是方程112xa的根,那么a的值是()A.0B.2C.2D.63.在平面直角坐标系中,直线1yx经过()A.第一、二、三象限B.第一、二、四象限C.第
一、三、四象限D.第二、三、四象限4.计算32aa的结果是()A.aB.aC.aD.a5.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌恰好是黑桃的概率是()A.12B.13C.23D.16.如图2,在平行四边形ABCD中,如果ABa
,ADb,那么ab等于()A.BDB.ACC.DBD.CA二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.不等式30x的解集是.8.分解因式:24x.9.用
换元法解分式方程21221xxxx时,如果设21xyx,并将原方程化为关于y的整式方程,那么这个整式方程是.10.方程32x的根是.11.已知函数()1fxx,那么(2)f.12.在平面直角坐标系中,如果双曲线(0)kykx
经过点(21),,那么k.13.在图3中,将直线OA向上平移1个单位,得到一个一次函数的DCBA图2O1234Axy图312图像,那么这个一次函数的解析式是.14.为了了解某所初级中学学生对2008年6
月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.15.如图4,已知ab∥,140,那么2的度数等于.16.如果两个相似三角形的相似比
是1:3,那么这两个三角形面积的比是.17.如图5,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果23BEBC,那么BFFD.18.在ABC△中,5ABAC,3cos5B(如图6).
如果圆O的半径为10,且经过点BC,,那么线段AO的长等于.三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:13(36)821.20.(本题满分10分)解方程:2654111xxxxx21.(本
题满分10分,第(1)小题满分3分,第(2)小题满分7分)“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不12ab图4ECDAFB图5ABC图6清楚(如图7所示).已知图纸上的图形是某
建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.(1)请你帮助小王在图8中把图形补画完整;(2)由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中1:0.75i是
坡面CE的坡度),求r的值.22.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的
有关数据,整理并分别绘成图9,图10.根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是万;图7OCADEH图82004200520062007年份年旅游收
入(亿元)9070503010图9旅游收入图图10(3)根据第(2)小题中的信息,把图10补画完整.23.(本题满分12分,每小题满分各6分)如图11,已知平行四边形ABCD中,对角线ACBD,交于点O,E是BD延长线上的点,且ACE△是等边三角形.(1)求证:四边形
ABCD是菱形;(2)若2AEDEAD,求证:四边形ABCD是正方形.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图12,在平面直角坐标系中,O为坐标原点.二次函数23yxbx的图像经过点(10
)A,,顶点为B.(1)求这个二次函数的解析式,并写出顶点B的坐标;(2)如果点C的坐标为(40),,AEBC,垂足为点E,点D在直线AE上,1DE,求点D的坐标.ECDBAO图11111Oxy图12A25.(本题满分14分,第(1)小题满分5分
,第(2)小题满分4分,第(3)小题满分5分)已知24ABAD,,90DAB,ADBC∥(如图13).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BEx,ABM△的面积为y,求y关于x的函数解析式,并写出
函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以AND,,为顶点的三角形与BME△相似,求线段BE的长.BADMEC图13BADC备用图2008年上海市初中毕业生
统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分
数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数
的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题:(本大题含Ⅰ,Ⅱ两组,每组各6题,满分24分)1.D;2.C;3.A;4.B;5.C;6.B.二、填空题:(本大题共12题,满分48分)7.3x;8.(2)(2)xx;9.2210yy;10.1x
;11.3;12.2;13.21yx;14.30;15.40;16.1:9;17.23;18.3或5.三、解答题:(本大题共7题,满分78分)19.解:原式2133222··················
·······································(8分)4.··························································································
···········(2分)20.解:去分母,得65(1)(4)(1)xxxx.····································································(3分)整理,得
2890xx.··········································································(2分)11x,29x.··································
···············································(4分)经检验,11x是增根,29x是原方程的根.············································(1分)所以,原方程的根是9x
.21.(1)(图形正确);···············································································(3分)(2)解:由已知OCDE,垂足为点H,则90CHE
.1:0.75i,43CHEH.·······································································(1分)在RtHEC△中,222EHCHEC.设4CHk,3(0)EHkk,又5CE,得2
22(3)(4)5kk,解得1k.3EH,4CH.······························(3分)7DHDEEH,7ODOAADr,4OHOCCHr.在RtODH△中,222OHDHOD,222(4)7(7)
rr.解得83r.·····························································································(3分)22.(1)45;·······················
·····································································(3分)(2)220;····················································
···········································(4分)(3)(图正确).··································································
·····················(3分)23.证明:(1)四边形ABCD是平行四边形,AOCO.························(2分)又ACE△是等边三角形,EOAC,即DBAC.········
·······················(2分)平行四边形ABCD是菱形;·····································································(2分)(2)ACE△是等边三角形,60
AEC.···········································(1分)EOAC,1302AEOAEC.·················································
·(1分)2AEDEAD,15EAD.45ADOEADAED.·····(1分)四边形ABCD是菱形,290ADCADO.···································(2分)四边形ABCD是正方
形.········································································(1分)24.解:(1)二次函数23yxbx的图像经过点(10)A,,013b
,得2b,·······································································(2分)所求二次函数的解析式为223yxx.·········································
·········(1分)则这个二次函数图像顶点B的坐标为(14),;··················································(2分)(2)过点B作BFx轴,垂足为点F.在RtBCF△中,4BF,3CF,5BC
,4sin5BCF.在RtACE△中,sinAEACEAC,又5AC,可得455AE.4AE.········································································(2分)过点
D作DHx轴,垂足为点H.由题意知,点H在点A的右侧,易证ADHACE△∽△.AHDHADAECEAC.其中3CE,4AE.设点D的坐标为()xy,,则1AHx,DHy,①若点D在AE的延长线上,则5AD.得15435xy,
3x,3y,所以点D的坐标为(33),;②若点D在线段AE上,则3AD.得13435xy,75x,95y,所以点D的坐标为7955,.综上所述,点D的坐标为(33),或7955,.···························
·························(5分)25.解:(1)取AB中点H,联结MH,M为DE的中点,MHBE∥,1()2MHBEAD.··························
···(1分)又ABBE,MHAB.··································································(1分)12ABMSABM
H△,得12(0)2yxx;···································(2分)(1分)(2)由已知得22(4)2DEx.··························································
(1分)以线段AB为直径的圆与以线段DE为直径的圆外切,1122MHABDE,即2211(4)2(4)222xx.·······················(2分)解得43x,即线段BE的长为43;··················
············································(1分)(3)由已知,以AND,,为顶点的三角形与BME△相似,又易证得DAMEBM.·····················
················································(1分)由此可知,另一对对应角相等有两种情况:①ADNBEM;②ADBBME.①当ADNBEM时,ADBE∥,ADND
BE.DBEBEM.DBDE,易得2BEAD.得8BE;················································(2分)②当ADBBME时,ADBE∥,ADBDBE
.DBEBME.又BEDMEB,BEDMEB△∽△.DEBEBEEM,即2BEEMDE,得2222212(4)2(4)2xxx.解得12x,210x(舍去).即线段BE的长为
2.····································(2分)综上所述,所求线段BE的长为8或2.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com