【文档说明】2007年高考试题——数学文(辽宁卷).doc,共(10)页,1.001 MB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-e07e1901487074936e75ccca197cf407.html
以下为本文档部分文字说明:
2007年普通高等学校招生全国统一考试(辽宁卷)数学(文科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参
考公式:如果事件AB,互斥,那么球的表面积公式()()()PABPAPB+=+24πSR=如果事件AB,相互独立,那么其中R表示球的半径()()()PABPAPB=球的体积公式如果事件A在一次试验中发生的概率是P,那么34π3VR=n次独立重复试
验中恰好发生k次的概率其中R表示球的半径()(1)kknknnPkCpp−=−一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{13}A=,,{234}B=
,,,则AB=()A.{1}B.{2}C.{3}D.{1234},,,解析:AB={1,3}∩{2,3,4}={3},选C2.若函数()yfx=的反函数...图象过点(15),,则函数()yfx=的图象必过点()A.(51),B.(15),C.(11),
D.(55),解析:根据反函数定义知反函数图像过(1,5),则原函数图像过点(5,1),选A3.双曲线221169xy−=的焦点坐标为()A.(70)−,,(70),B.(07)−,,(07),C.(50
)−,,(50),D.(05)−,,(05),解析:因为a=4,b=3,所以c=5,所以焦点坐标为(50)−,,(50),,选C4.若向量a与b不共线,0ab,且−aac=abab,则向量a与c的夹角为()A.0B.π6C
.π3D.π2解析:因为0)(22=−=→→→→→→→→babaaaca,所以向量a与c垂直,选D5.设等差数列{}na的前n项和为nS,若39S=,636S=,则789aaa++=()A.63B.45C.36D.27解析:由等
差数列性质知S3、S6-S3、S9-S6成等差数列,即9,27,S成等差,所以S=45,选B6.若mn,是两条不同的直线,,,是三个不同的平面,则下列命题中的真命题...是()A.若m⊥,,则m⊥B.若m⊥,m∥,则⊥C.若⊥,⊥,则⊥D.若m=
,n=,mn∥,则∥解析:由有关性质排除A、C、D,选B7.若函数()yfx=的图象按向量a平移后,得到函数(1)2yfx=−−的图象,则向量a=()A.(12)−,B.(12),C.(12)−,D.(12)−,解析:函数(1)2yfx=−−为)1(2−=+xf
y,令2,1''+=−=yyxx得平移公式,所以向量a=(12)−,,选C8.已知变量xy,满足约束条件20170xyxxy−++−≤,≥,≤,则yx的取值范围是()A.965,B.)965−+,,
C.()36−+,,D.[36],解析:画出可行域为一三角形,三顶点为(1,3)、(1,6)和(29,25),yx表示可行域内的点(x,y)与原点(0,0)连线的斜率,当(x,y)=(1,6)时取最大值6,当(x,y)=(29,25)时取最小值59,选A
9.函数212log(56)yxx=−+的单调增区间为()A.52+,B.(3)+,C.52−,D.(2)−,解析:定义域为(2)−,∪(3)+,,排除A、C,根据复合函数的单调性知212log(56)yxx=−+的单
调增区间为(2)−,,选D10.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为()A.122B.111C.322D.211解析:从中任取两个球共有66212=
C种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有122326=−CC种取法,概率为1126612=,选D11.设pq,是两个命题:251:||30:066pxqxx−−+,,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条
件解析:p:),3()3,(+−−,q:),21()31,(+−,结合数轴知p是q的充分而不必要条件,选A12.将数字1,2,3,4,5,6拼成一列,记第i个数为i(i126)a=,,,,若11a,33a,55a,135aaa,
则不同的排列方法种数为()A.18B.30C.36D.48解析:分两步:(1)先排531,,aaa,1a=2,有2种;1a=3有2种;1a=4有1种,共有5种;(2)再排642,,aaa,共有633=A种,故不同的排列方法种
数为5×6=30,选B第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数()yfx=为奇函数,若(3)(2)1ff−=,则(2)(3)ff−−−=.解析:由函数()yfx=为奇函数得
(2)(3)ff−−−=(3)(2)1ff−=,填114.41()xxx+展开式中含x的整数次幂的项的系数之和为(用数字作答).解析:2488481)1()(−−+==rrrrrrxCxxCT,当r=0,4,8时为含x的整数次幂的项,所
以展开式中含x的整数次幂的项的系数之和为72884808=++CCC,填7215.若一个底面边长为62,棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球的体积为.解析:根据条件正六棱柱的最长的对角线为
球的直径,由12)6()6()2(222=+=R得R=3,球体积为34343=R16.设椭圆2212516xy+=上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足1()2OMOPOF=+,则||OM=.解析:椭圆2212516x
y+=左准线为325−=x,左焦点为(-3,0),P()328,35,由已知M为PF中点,M()324,32−,所以||OM=2)324()32(22=+−三、解答题:本大题共6小题,共74分.解答应写出文字说明
,证明过程或演算步骤.17.(本小题满分12分)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组[500,900)[900,1100)[1100,1300)[1
300,1500)[1500,1700)[1700,1900)[1900,+)频数4812120822319316542频率(I)将各组的频率填入表中;(II)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(III)该公司某办公室新安装了这种
型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率.本小题主要考查频率、概率、总体分布的估计、独立重复试验等基础知识,考查使用统计的有关知识解决实际问题的能力.(I)解:分组[500,900)[900,1100)[110
0,1300)[1300,1500)[1500,1700)[1700,1900)[1900,+)频数4812120822319316542频率0.0480.1210.2080.2230.1930.1650.
042··········································································································4分(II)解:由(I)可得0.04
80.1210.2080.2230.6+++=,所以灯管使用寿命不足1500小时的频率为0.6.··································································
·······················8分(III)解:由(II)知,1支灯管使用寿命不足1500小时的概率0.6P=,根据在n次独立重复试验中事件恰好发生k次的概率公式可得223333(2)(3)C0.60.40.60.648PP+=+=.所以至少有2支灯管的使用寿命
不足1500小时的概率是0.648.····························12分18.(本小题满分12分)如图,在直三棱柱111ABCABC−中,90ACB=,ACBCa==,DE,分别为棱ABBC,的中点,M为棱1AA
上的点,二面角MDEA−−为30.(I)证明:111ABCD⊥;(II)求MA的长,并求点C到平面MDE的距离.本小题主要考查空间中的线面关系,解三角形等基础知识,考查空间想象能力与思维能力.(I)证明:连结CD,三棱柱111
ABCABC−是直三棱柱,1CC⊥平面ABC,CD为1CD在平面ABC内的射影.ABC△中,ACBC=,D为AB中点,ABCD⊥,1ABCD⊥.11ABAB∥,111ABCD⊥.1A1C1BCBAMDE1A1C1BCBAMDEFG(II)解法一:过点A作CE的平行线,交ED的延长
线于F,连结MF.DE,分别为ABBC,的中点,DEAC⊥.又AFCE∥,CEAC⊥.AFDE⊥.MA⊥平面ABC,AF为MF在平面ABC内的射影.MFDE⊥.MFA为二面角MDEA−−的平面角,30MFA=.在RtMAF△中,122aAFBC==
,30MFA=,36AMa=.作AGMF⊥,垂足为G,MFDE⊥,AFDE⊥,DE⊥平面DMF,平面MDE⊥平面AMF,AG⊥平面MDE.在RtGAF△中,30GFA=,2aAF=,4aAG=,即A到平面MDE的距离为4a.
CADE∥,CA∥平面MDE,C到平面MDE的距离与A到平面MDE的距离相等,为4a.解法二:过点A作CE的平行线,交ED的延长线于F,连接MF.DE,分别为ABBC,的中点,DEAC∥.又AFCE∥,CEDE⊥A
FDE⊥.MA⊥平面ABC,AF是MF在平面ABC内的射影,MFDE⊥.MFA为二面角MDEA−−的平面角,30MFA=.在RtMAF△中,122aAFBC==,30MFA=,36AMa
=.···························································································8分设C到平面MDE的距离为h,MCDECMDEVV−−=.1133CDEMDESMASh=△2
128CDEaSCEDE==△,36MAa=,211322cos3012MDEAFSDEMFDEa===△,221313386312aaah=,4ah=,即C到平面MDE的距离为4a.················································
·······12分19.(本小题满分12分)已知函数2ππ()sinsin2cos662xfxxxx=++−−R,(其中0)(I)求函数()fx的值域;(II)若函数()yfx=的图象与直线1y=−的两个相邻交点间的距离为
π2,求函数()yfx=的单调增区间.本小题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.满分12分.(I)解:3131()sincossincos(cos1)2222fxxxxxx=++−−+312sincos122xx=−−
π2sin16x=−−.··················································································
··5分由π1sin16x−−≤≤,得π32sin116x−−−≤≤,可知函数()fx的值域为[31]−,.················································
·······················7分(II)解:由题设条件及三角函数图象和性质可知,()yfx=的周期为π,又由0,得2ππ=,即得2=.·····················
······························································9分于是有π()2sin216fxx=−−,再由πππ2π22π()262kxkk−−+Z≤≤,解得ππππ()63
kxkk−+Z≤≤.所以()yfx=的单调增区间为ππππ63kk−+,()kZ····································12分20.(本小题满分12分)已知数列{}na,{}nb满
足12a=,11b=,且11113114413144nnnnnnaabbab−−−−=++=++(2n≥)(I)令nnncab=+,求数列{}nc的通项公式;(II)求数列{}na的通项公式及前n项和公
式nS.本小题主要考查等差数列,等比数列等基础知识,考查基本运算能力.(I)解:由题设得11()2(2)nnnnababn−−+=++≥,即12nncc−=+(2n≥)易知{}nc是首项为113ab+=,公差为2的等
差数列,通项公式为21ncn=+.··························································································
······4分(II)解:由题设得111()(2)2nnnnababn−−−=−≥,令nnndab=−,则11(2)2nnddn−=≥.易知{}nd是首项为111ab−=,公比为12的等比数列,通项公式为112nnd−=.·················
·················································································8分由12112nnnnnabnab−+
=+−=,解得1122nnan=++,·······················································································
·10分求和得21122nnnSn=−+++.·······································································12分21.(本小题满分14分)已知正三角
形OAB的三个顶点都在抛物线22yx=上,其中O为坐标原点,设圆C是OAB△的内接圆(点C为圆心)(I)求圆C的方程;(II)设圆M的方程为22(47cos)(7sin)1xy−−+−=,过圆M上任意一点P分别作圆C的两条切线
PEPF,,切点为EF,,求CECF,的最大值和最小值.本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力.满分14分.(I)解法一:设AB,两点坐标分别为2112yy,,2222yy,,由题设知2222
22222211122212()2222yyyyyyyy+++=−+−.解得221212yy==,所以(623)A,,(623)B−,或(623)A−,,(623)B,.设圆心C的坐标为(0)r,,则264
3r==,所以圆C的方程为22(4)16xy−+=.···········································································
············4分解法二:设AB,两点坐标分别为11()xy,,22()xy,,由题设知22221122xyxy+=+.又因为2112yx=,2222yx=,可得22112222xxxx+=+.即1212
()(2)0xxxx−++=.由10x,20x,可知12xx=,故AB,两点关于x轴对称,所以圆心C在x轴上.设C点的坐标为(0)r,,则A点坐标为3322rr,,于是有233222rr=,解得4r=,所以圆C的方程为22(
4)16xy−+=.·······························································4分(II)解:设2ECFa=,则2||||cos216cos232cos16CECFCECF===−.·····
·····························8分在RtPCE△中,4cos||||xPCPC==,由圆的几何性质得||||17PCMC+=≤18+=,||||1716PCMC−=−=≥,所以12cos23≤≤,由此可得1689CECF−−≤≤.则CECF的最大值为1
69−,最小值为8−.22.(本小题满分12分)已知函数322()9cos48cos18sinfxxxx=−++,()()gxfx=,且对任意的实数t均有(1cos)0gt+≥,(3sin)0gt+≤.(I)求函数()fx的解析式;(II)若对任意
的[266]m−,,恒有2()11fxxmx−−≥,求x的取值范围.