高中数学人教版必修1教案:2.2.1对数与对数运算 (系列五)含答案

DOC
  • 阅读 4 次
  • 下载 0 次
  • 页数 10 页
  • 大小 294.500 KB
  • 2024-12-28 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高中数学人教版必修1教案:2.2.1对数与对数运算 (系列五)含答案
可在后台配置第一页与第二页中间广告代码
高中数学人教版必修1教案:2.2.1对数与对数运算 (系列五)含答案
可在后台配置第二页与第三页中间广告代码
高中数学人教版必修1教案:2.2.1对数与对数运算 (系列五)含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有4人购买 付费阅读2.40 元
/ 10
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】高中数学人教版必修1教案:2.2.1对数与对数运算 (系列五)含答案.doc,共(10)页,294.500 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-d6b73ed840ed06125fe9b002027c0fbf.html

以下为本文档部分文字说明:

2.2对数函数2.2.1对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性

质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这

些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力

量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行

运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会

对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性.重点难点教学重点:对数式与指数式的互化及对数

的性质,对数运算的性质与对数知识的应用.教学难点:对数概念的理解,对数运算性质的推导及应用.课时安排3课时教学过程第1课时对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?

2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.(21)4=?(21)x=0.125x=?2.(1+8%)x=2x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,

求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:

对数与对数运算(1)〕.推进新课新知探究提出问题(对于课本P572.1.2的例8)①利用计算机作出函数y=13×1.01x的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…?③如果不利用图象该如何解

决,说出你的见解?即1318=1.01x,1320=1.01x,1330=1.01x,在这几个式子中,x分别等于多少?④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于

人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形.讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P的坐标

,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x,1320=1

.01x,1330=1.01x,在这几个式子中,要求x分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x,则x称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0

,a≠1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.有了对数的定义,前面问题的x就可表示了:x=log1.011318,x

=log1.011320,x=log1.011330.由此得到对数和指数幂之间的关系:aNb指数式ab=N底数幂指数对数式logaN=b对数的底数真数对数例如:42=162=log416;102=1002=log10100;421=221=log42

;10-2=0.01-2=log100.01提出问题①为什么在对数定义中规定a>0,a≠1?②根据对数定义求loga1和logaa(a>0,a≠1)的值.③负数与零有没有对数?④Naalog=N与logaab=b(a>0,a≠1)是否成立?讨论结果:①这是因为若a<0,则N为

某些值时,b不存在,如log(-2)21;若a=0,N不为0时,b不存在,如log03,N为0时,b可为任意正数,是不唯一的,即log00有无数个值;若a=1,N不为1时,b不存在,如log12,N为1时,b可为任意数,是不唯一的

,即log11有无数个值.综之,就规定了a>0且a≠1.②loga1=0,logaa=1.因为对任意a>0且a≠1,都有a0=1,所以loga1=0.同样易知:logaa=1.即1的对数等于0,底的对数等于1.③因为底数a>0

且a≠1,由指数函数的性质可知,对任意的b∈R,ab>0恒成立,即只有正数才有对数,零和负数没有对数.④因为ab=N,所以b=logaN,ab=aNaalog=N,即aNaalog=N.因为ab=ab,所以logaab=b.

故两个式子都成立.(aNaalog=N叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗?活动:同学们阅读课本P68的内容,教师引导

,板书.解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N的常用对数log10N简记作lgN.例如:log105简记作lg5;log103.5简记作lg3.5.②自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e为

底的对数叫自然对数,为了简便,N的自然对数logeN简记作lnN.例如:loge3简记作ln3;loge10简记作ln10.应用示例思路1例1将下列指数式写成对数式,对数式写成指数式:(1)54=625;(2)2-6=6

41;(3)(31)m=5.73;(4)log2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数.对(2)根据

指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m在指数位置上,m是以31为底5.73的对数.对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂.对(5

)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂.对(6)根据指数式与对数式的关系,10在真数位置上,10是e的2.303次幂.解:(1)log5625=4;(2)log2641=-6;(3)log315.73=m;(4)(21)-

4=16;(5)10-2=0.01;(6)e2.303=10.思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数

是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N与b在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据.变式训练课本P64练习1、2.例2求下列各式中x的值:(1)log6

4x=32−;(2)logx8=6;(3)lg100=x;(4)-lne2=x.活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log64

x=-32,所以x=6432−=(2))32(6−=2-4=161.(2)因为logx8=6,所以x6=8=23=(2)6.因为x>0,因此x=2.(3)因为lg100=x,所以10x=100=102.因

此x=2.(4)因为-lne2=x,所以lne2=-x,e-x=e2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解.变式训练求下列各式中的x:①log4x=21;②logx27=43;③log5(log

10x)=1.解:①由log4x=21,得x=421=2;②由logx27=43,得x43=27,所以x=2734=81;③由log5(log10x)=1,得log10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为

指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是()(1)若log5x=3,则x=15(2)若log25x=21,则x=5(3)若logx5=0,则x=5(4)若log5x=-3,则x=1251A.(2)(3)B.(1)(3)C.(2)(4)D.(3)

(4)活动:学生观察,教师引导学生考虑对数的定义.对数式化为指数式,根据指数幂的运算性质算出结果.对于(1)因为log5x=3,所以x=53=125,错误;对于(2)因为log25x=21,所以x=2521=5,正

确;对于(3)因为logx5=0,所以x0=5,无解,错误;对于(4)因为log5x=-3,所以x=5-3=1251,正确.总之(2)(4)正确.答案:C点评:对数的定义是对数形式和指数形式互化的依据.例2对于a>0,a≠1

,下列结论正确的是()(1)若M=N,则logaM=logaN(2)若logaM=logaN,则M=N(3)若logaM2=logaN2,则M=N(4)若M=N,则logaM2=logaN2A.(1)(3)B.(2)(4)C.(2)D.(1)(2)(4)活动:学生思考,讨

论,交流,回答,教师及时评价.回想对数的有关规定.对(1)若M=N,当M为0或负数时logaM≠logaN,因此错误;对(2)根据对数的定义,若logaM=logaN,则M=N,正确;对(3)若logaM2=logaN2,则M=±N,因此错误;对(4)若M=N=0时,则logaM

2与logaN2都不存在,因此错误.综上,(2)正确.答案:C点评:0和负数没有对数,一个正数的平方根有两个.例3计算:(1)log927;(2)log4381;(3)log)32(+(2-3);(4)l

og345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程

求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log927,则9x=27,32x=33,所以x=23;(2)设x=log4381,则(43)x=81,34x=34,所以x=16;(3)令x=log)32(+(2-3)=log)32(+

(2+3)-1,所以(2+3)x=(2+3)-1,x=-1;(4)令x=log345625,所以(345)x=625,534x=54,x=3.解法二:(1)log927=log933=log9923=23;(2

)log4381=log43(43)16=16;(3)log)32(+(2-3)=log)32(+(2+3)-1=-1;(4)log345625=log345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算

出结果,对数的定义是转化和对数恒等式的依据.变式训练课本P64练习3、4.知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x=2;(4)2x=0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16.解:(1)2=log416;(2)0=log3

1;(3)x=log42;(4)x=log20.5;(5)4=log5625;(6)-2=log391;(7)-2=log4116.2.把下列各题的对数式写成指数式:(1)x=log527;(2)x=log87;(3)x=log43;(4)x=log731;(5

)log216=4;(6)log3127=-3;(7)logx3=6;(8)logx64=-6;(9)log2128=7;(10)log327=a.解:(1)5x=27;(2)8x=7;(3)4x=3;(4)7x=31;(5)24=16;(6

)(31)-3=27;(7)(3)6=x;(8)x-6=64;(9)27=128;(10)3a=27.3.求下列各式中x的值:(1)log8x=32−;(2)logx27=43;(3)log2(log5x)=

1;(4)log3(lgx)=0.解:(1)因为log8x=32−,所以x=832−=(23)32−=)32(32−=2-2=41;(2)因为logx27=43,所以x43=27=33,即x=(33)34=34=81;(3)因为log2(log5x)=1,所以log5x=2,x=52=25;

(4)因为log3(lgx)=0,所以lgx=1,即x=101=10.4.(1)求log84的值;(2)已知loga2=m,loga3=n,求a2m+n的值.解:(1)设log84=x,根据对数的定义有8x=4,即23x=22,所以x=32,即log84=32;(2)因为loga2

=m,loga3=n,根据对数的定义有am=2,an=3,所以a2m+n=(am)2·an=(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用.拓展提升请你阅读课本75页的有关阅读部分的内容

,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础.课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特

殊的对数.作业课本P74习题2.2A组1、2.【补充作业】1.将下列指数式与对数式互化,有x的求出x的值.(1)521−=51;(2)log24=x;(3)3x=271;(4)(41)x=64;(5)lg0.0001=x;(6)lne5=x.

解:(1)521−=51化为对数式是log551=21−;(2)x=log24化为指数式是(2)x=4,即22x=22,2x=2,x=4;(3)3x=271化为对数式是x=log3271,因为3x=(31)3=3-3,所以x=-3;(4)(41)x=64化为对数式是x=log4164,因为(41

)x=64=43,所以x=-3;(5)lg0.0001=x化为指数式是10x=0.0001,因为10x=0.0001=10-4,所以x=-4;(6)lne5=x化为指数式是ex=e5,因为ex=e5,所以x=5.2.计算51log5

3log333+的值.解:设x=log351,则3x=51,(321)x=(51)21,所以x=log513.所以351log5log3333+=513log35+=515+=556.3.计算Ncbcbaalogloglog••(a>0,b>0

,c>0,N>0).解:Ncbcbaalogloglog••=Nccbbloglog•=Ncclog=N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也

是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理

解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备.

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 139324
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?