【文档说明】《江苏中考真题数学》2016年常州市中考数学试题及答案.docx,共(34)页,360.067 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-bf64c45598c840d2d288824e0551514b.html
以下为本文档部分文字说明:
2016年江苏省常州市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)﹣2的绝对值是()A.﹣2B.2C.﹣D.2.(2分)计算3﹣(﹣1)的结果是()A.﹣4B.﹣2C.2D.43.(2分)如图所示是一个几何体的三视图,这个几何体的名称是()A.圆
柱体B.三棱锥C.球体D.圆锥体4.(2分)如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点AB.点BC.点CD.点D5.(2分)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边
与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cmB.5cmC.6cmD.10cm6.(2分)若x>y,则下列不等式中不一定成立的是()A.x+1>y+1B.2x>2yC.>D.x2>y27.(2分)已知△ABC中
,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2B.4C.5D.78.(2分)已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x…﹣1024…y1…0135…x…﹣1134
…y2…0﹣405…当y2>y1时,自变量x的取值范围是()A.x<﹣1B.x>4C.﹣1<x<4D.x<﹣1或x>4二、填空题(共10小题,每小题2分,满分20分)9.(2分)化简:﹣=.10.(2分)若分式有
意义,则x的取值范围是.11.(2分)分解因式:x3﹣2x2+x=.12.(2分)一个多边形的每个外角都是60°,则这个多边形边数为.13.(2分)若代数式x﹣5与2x﹣1的值相等,则x的值是.14.(2分)在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是km
.15.(2分)已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是.16.(2分)如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC
=.17.(2分)已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是.18.(2分)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形P
CDE面积的最大值是.三、解答题(共10小题,满分84分)19.(6分)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.20.(8分)解方程和不等式组:(1)+=1(2).21.(8分)为了解某市市民晚饭
后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了名市民;(2)补全条形统计图;(3)
该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.22.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再
从中任意摸出1个球,求两次都摸到红球的概率.23.(8分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.24.(8分)某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖
果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?25.(8分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把
Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?
请说明理由.26.(10分)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为
5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE
剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交
于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)27.(10分)如图,在平面直角坐标系xOy中,一次函数
y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQ
Q1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.28.(10分)如图,正方形ABCD的边长为
1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直
线BD与⊙M相切时,直接写出PC的长.2016年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)﹣2的绝对值是()A.﹣2B.2C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对
值的定义,关键是利用了绝对值的性质.2.(2分)计算3﹣(﹣1)的结果是()A.﹣4B.﹣2C.2D.4【分析】减去一个数等于加上这个数的相反数,所以3﹣(﹣1)=3+1=4.【解答】解:3﹣(﹣1)=4,故答案为:D.【点评】本题考查了有理数的减法,属于基础题,比较简单;熟练掌握减法法则
是做好本题的关键.3.(2分)如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于
主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.(2分)如图,数轴上点P对应的数为
p,则数轴上与数﹣对应的点是()A.点AB.点BC.点CD.点D【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,1<p<2,则<<1,所以﹣1<﹣<﹣.则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是
解题的关键.5.(2分)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cmB.5cmC.6cmD.10cm【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再
来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,9
0°的圆周角所对的弦是直径.6.(2分)若x>y,则下列不等式中不一定成立的是()A.x+1>y+1B.2x>2yC.>D.x2>y2【分析】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号
的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变.【解答】解:(A)在不等式x>y两边都加上1,不等号的方向不变,故(A)正确;(B)在不等式x>y两边都乘上2,不等号的方向不变,故
(B)正确;(C)在不等式x>y两边都除以2,不等号的方向不变,故(C)正确;(D)当x=1,y=﹣2时,x>y,但x2<y2,故(D)错误.故选(D)【点评】本题主要考查了不等式的性质,应用不等式的
性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.7.(2分)已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2B.4C.5D.7【分析】根据垂线段最短得出结论.【解答】解
:如图,根据垂线段最短可知:PC≤3,∴CP的长可能是2,故选A.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线
段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.8.(2分)已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变
量和对应函数值如表:x…﹣1024…y1…0135…x…﹣1134…y2…0﹣405…当y2>y1时,自变量x的取值范围是()A.x<﹣1B.x>4C.﹣1<x<4D.x<﹣1或x>4【分析】方法一:先在表格中找出点,用待定系数法求出直线和抛物线的解析式,用
y2>y1建立不等式,求解不等式即可.方法二:直接由表得出两函数图象的交点坐标(﹣1,0),(4,5),再结合变化规律得出结论.【解答】解法一:由表可知,(﹣1,0),(0,1)在一次函数y1=kx+m的图象上,∴,∴∴一次函数y1=x+1,由表可知,(﹣1,0),(1
,﹣4),(3,0)在二次函数y2=ax2+bx+c(a≠0)的图象上,∴,∴∴二次函数y2=x2﹣2x﹣3当y2>y1时,∴x2﹣2x﹣3>x+1,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D,解法二:如图,由表得出两函数图象的交点坐标(﹣1,0),(4,5),∴x>4或x
<﹣1,故选D.【点评】此题是二次函数和不等式题目,主要考查了待定系数法,解不等式,解本题的关键是求出直线和抛物线的解析式.二、填空题(共10小题,每小题2分,满分20分)9.(2分)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法
进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.(2分)若分式有意义,则
x的取值范围是x≠﹣1.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.11.(2分)分解因式:x3﹣2x
2+x=x(x﹣1)2.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.12.(2分)一个多
边形的每个外角都是60°,则这个多边形边数为6.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360
°.13.(2分)若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4【点评】此题考查了解一元一次方程,熟练掌握运算法则是
解本题的关键.14.(2分)在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是2.8km.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条
道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.15.(2分)已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1
,﹣1),则另一个交点坐标是(1,1).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于
原点对称,∴该点的坐标为(1,1).故答案为:(1,1).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.(2分)如图,在⊙O的内接四边形ABCD中,∠A=70°,
∠OBC=60°,则∠ODC=50°.【分析】根据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再根据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A
=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答此题的关键.17.(
2分)已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤.【分析】首先把已知得到式子的两边化成以2为底数的幂的形式,然后得到x和y的关系,根据x的范围求得y的范围.【解答】解:∵2x•4y=8,∴2x•22y=23,即2x+2y=23,∴x+2y=3.∴x=3﹣2y,∵0
≤x≤1,∴0≤3﹣2y≤1,∴1≤y≤.故答案是:1≤y≤.【点评】本题考查了幂的乘方和同底数的幂的乘法法则,理解幂的运算法则得到x和y的关系是关键.18.(2分)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则
四边形PCDE面积的最大值是1.【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判
断ab的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=
b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CD,∴
四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1
【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三、解答题(共10小题,满分84分)19.(6分)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【分析】根据多项
式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.20.(8分)解
方程和不等式组:(1)+=1(2).【分析】(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原方程可化为x﹣5=2x﹣5,解得x=0,把x=0代入2x﹣5得
,2x﹣5=﹣5≠0,故x=0是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.21.(8分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”
、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计
该市市民晚饭后1小时内锻炼的人数.【分析】(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人
数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择
其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有48
0万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)根据数量关系算出样本容量;(2)求出选择其它和锻炼的人数;(3)根
据比例关系估算出本市晚饭后1小时内锻炼的人数.本题属于中档题,难度不大,解决该题型题目时,熟练掌握各统计图的有关知识是关键.22.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋
子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【分析】(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:(1
)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,
然后根据概率公式求出事件A或B的概率.23.(8分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【分析】(1)
首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线
,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,BE=CD在△BOE和△COD中∵∠BOE=∠COD,BE=CD,∠BEC=∠BDE=90°∴△BOE≌△COD,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A
=180°﹣2×50°=80°,∴∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.24.(8分)某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克
乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?【分析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元.根据“3千克甲种糖果和1千
克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元”列出方程组并解答;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,结合“总价不超过240元”列出不等式,并解答.【解答】解:(1)设超市
甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,解得.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,解得a≥10,即a最小值=10.答:该顾客混合的糖果中甲
种糖果最少10千克.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.(8分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30
°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,
当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解答】解;(1)如图1中,∵一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1
),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,解得,∴直线O′B′的解析式为y=x+1,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2
)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边
形ADO′B′是平行四边形.【点评】本题考查一次函数图象上的点的特征、平行四边形的性质和判定、旋转变换等知识,解题的关键是利用性质不变性解决问题,属于中考常考题型.26.(10分)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪
开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类
比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称
的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)【分析】(1
)依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;(2)①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,结合等边三角形的面积公式即可;②依题意补全图形如图3所示;(3)依题意补全图形如图4,根据剪拼的特点,得出AC是正方形的对角线,点E,
F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形
的边长为,故答案为:;(2)①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,∴S梯形EDBC=(DE+BC)×
DM=(1+2)×=,由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,∴a=或a=﹣(舍),∴新等边三角形的边长为,故答案为:;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,
由剪拼可知,AC是正方形的对角线,∴AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60+30=90cm.
【点评】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,勾股定理,剪拼的特点,解本题的关键是根据题意补全图形,难点是剪拼新正三角形和筝形.27.(10分)如图,在平面直角坐标系xOy中,一次函数y=x与二次函
数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)
直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.【分析】(1)把点A(3,3)代入y=x2+bx中,即可解决问题.(2)设点P在点Q的左下方,过点P作
PE⊥QQ1于点E,如图1所示.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),构建二次函数,利用二次函数性质即可解决问题.(3)存在,首先证明EF是线段AM的中垂线,利用方
程组求交点E坐标,再根据对称性E关于点A的对称点E′也符合条件,求出E、E′坐标即可.【解答】解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P在点Q的左下方,过点
P作PE⊥QQ1于点E,如图1所示.∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=x,∴∠QPE=45°,∴PE=PQ=2.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),∴PP1=3m﹣m2,QQ1=2﹣m
2﹣m,∴=(PP1+QQ1)•PE=﹣2m2+2m+2=﹣2+,∴当m=时,取最大值,最大值为.(3)存在.如图2中,①点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.∵S△AOF=S△AOM
,∴MF∥OA,∵EG=GF,=,∴AG=GM,∵M(1,﹣1),A(3,3),∴点G(2,1),∵直线AM解析式为y=2x﹣3,∴线段AM的中垂线EF的解析式为y=﹣x+2,由解得,∴点E坐标为(,).②设E关于点A的对称点
E′,E′关于AM的对称点F′,根据对称性可知,△OAF′与△AOF的面积相等,此时E′(,),综上所述满足条件的点E坐标(,)或(,).【点评】本题考查二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会构建二次函数,利用二次
函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.(10分)如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂
足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.【分析】(1)在直角△ABP中,利用特殊角的三角函数值求∠BA
P的度数;(2)设PC=x,根据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得,代入列方程求出x的值,因为点P在线段BC上,所以x<1,写出符合条件的PC的长;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,只要证明
FC⊥CM即可,先根据直角三角形斜边上的中线得CM=PM,则∠MCP=∠MPC,从而可以得出∠MCP+∠BAP=90°,再证明△ADF≌△CDF,得∠FAD=∠FCD,则∠BAP=∠BCF,所以得出∠MCP+∠BCF=90°,FC⊥
CM;如图3,当点P在线段BC的延长线上时,FC与⊙M相切,同理可得∠MCD+∠FCD=90°,则FC⊥CM,FC与⊙M相切;②当点P在线段AB上时,如图4,设⊙M切BD于E,连接EM、MC,设∠Q=x,根据平角BFD列方程求出x的值,作AP的中垂线HN
,得∠BHP=30°,在Rt△BHP中求出BP的长,则得出PC=﹣1;当点P在点C的右侧时(即在线段BC的延长线上),如图5,同理可得:PC=+1.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABP=90°,∴tan∠BAP===,∵ta
n30°=,∴∠BAP=30°;(2)如图1,设PC=x,则BP=1﹣x,∵△FGC≌△QCP,∴GC=PC=x,DG=1﹣x,∵∠BDC=45°,∠FGD=90°,∴△FGD是等腰直角三角形,∴FG=DG=CQ=1﹣x,∵AB∥DQ,∴,∴,∴x=(1﹣x)2,解得:x1=>1
(舍去),x2=,∴PC=;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,理由是:取PQ的中点M,以M为圆心,以PQ为直径画圆,连接CM,∵∠PCQ=90°,PQ为直径,∴点C是圆M上,∵△PCQ为直角三角形,∴MC=PM,∴∠MCP=∠MPC,∵∠APB=∠MPC,∴∠MCP=∠APB
,∵∠APB+∠BAP=90°,∴∠MCP+∠BAP=90°,∵AD=DC,∠ADB=∠CDB,FD=FD,∴△ADF≌△CDF,∴∠FAD=∠FCD,∵∠BAP+∠FAD=∠BCF+∠FCD,∴∠BAP=∠BCF,∴∠MCP+∠BCF=90°,∴FC⊥CM,∴FC与⊙M相切;如图3,当点P在
线段BC的延长线上时,FC与⊙M也相切,理由是:取PQ的中点M,以M为圆心,以PQ为直径画圆,连接CM,同理得∠AQD=∠MCQ,点C是圆M上,∵AD=DC,∠BDA=∠CDB=45°,DF=DF,∴△ADF≌△CDF,∴∠FAD=∠FCD,∵∠AQ
D+∠FAD=90°,∴∠MCD+∠FCD=90°,∴FC⊥MC,∴FC与⊙M相切;:②当点P在线段BC上时,如图4,设⊙M切BD于E,连接EM、MC,∴∠MEF=∠MCF=90°,∵ME=MC,MF=MF,∴△MEF≌△MCF,∴∠QFC=∠QFE,∵∠BAP=∠Q=∠BCF,设∠Q=x,则∠B
AP=∠BCF=x,∠QFE=∠QFC=45°+x,∠DFC=45°+x,∵∠QFE+∠QFC+∠DFC=180°,∴3(45+x)=180,x=15,∴∠Q=15°,∴∠BAP=15°,作AP的中垂线HN,交AB于H,交AP于N,∴AH=AP
,∴∠BHP=30°,设BP=x,则HP=2x,HB=x,∴2x+x=1,x=2﹣,∴PC=BC﹣BP=1﹣(2﹣)=﹣1;当点P在点C的右侧时(即在线段BC的延长线上),如图5,同理可得:PC=+1;综上所述:PC=﹣1或+1.【点评】本题是圆的综合题,综合
考查了正方形、圆及切线、全等三角形的性质及判定;同时利用特殊的三角函数值求角的度数,本题还是动点问题,难度较大,尤其是第(3)问,因为不确定点P是在线段BC上还是在延长线上,有此情况存在,所以都要分情况进行讨论,从而分别证出结论或求出PC的长.获得更多资源请扫码加入享学资源网微信公众号w
ww.xiangxue100.com