《山东中考真题数学》2013年青岛市中考数学试题及答案

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 13 页
  • 大小 222.084 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《山东中考真题数学》2013年青岛市中考数学试题及答案
可在后台配置第一页与第二页中间广告代码
《山东中考真题数学》2013年青岛市中考数学试题及答案
可在后台配置第二页与第三页中间广告代码
《山东中考真题数学》2013年青岛市中考数学试题及答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有1人购买 付费阅读2.40 元
/ 13
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《山东中考真题数学》2013年青岛市中考数学试题及答案.docx,共(13)页,222.084 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-bb391a744cef6a2edcff02495d8b0038.html

以下为本文档部分文字说明:

山东省青岛市2013年中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)(2013•青岛)﹣6的相反数是()A.﹣6B.6C.﹣D.2.(3分)(2013•青岛)下列四个图形中,是中心对称图形的是()A.B.C.D.3.(3分)(2013•青

岛)如图所示的几何体的俯视图是()A.B.C.D.4.(3分)(2013•青岛)“十二五”以来,我国积极推进国家创新体系建设.国家统计局《2012年国民经济和社会发展统计公报》指出:截止2012年底,国内有效专利达8750000

件,将8750000件用科学记数法表示为()件.A.8.75×104B.8.75×105C.8.75×106D.8.75×1075.(3分)(2013•青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红

球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.556.(3

分)(2013•青岛)已知矩形的面积为36cm2,相邻的两条边长分别为xcm和ycm,则y与x之间的函数图象大致是()A.B.C.D.7.(3分)直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6B.r=6

C.r>6D.r≥68.(3分)(2013•青岛)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()二、填

空题(本题满分18分共有6道题,每小题3分)9.(3分)(2013•青岛)计算:2﹣1+=.10.(3分)(2013•青岛)某校对甲、乙两名跳高运动员的近期调高成绩进行统计分析,结果如下:=1.69m,=1.69m,S2甲=

0.0006,S2乙=0.00315,则这两名运动员中的成绩更稳定.11.(3分)(2013•青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元.设这两年该企业交税的年平均增长率为x,根据题意,可得

方程.12.(3分)(2013•青岛)如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于点P,则这个正比例函数的表达式是.13.(3分)(2013•青岛)如图,AB是⊙O的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是

.14.(3分)(2013•青岛)要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切次;分割成64个小正方体

,至少需要用刀切次.三、作图题(本题满分4分)用圆规、直尺作图,不写做法,但要保留作图痕迹。15.(4分)(2013•青岛)已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,

使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)四、解答题(本题满分74分,共有9道小题)16.(8分)(2013•青岛)(1)解方程组:;(2)化简:(1+)•.17.(6分)(2013•青岛)请根据所给信息,帮助小颖

同学完成她的调查报告2013年4月光明中学八年级学生每天干家务活平均时间的调查报告调查目的了解八年级学生每天干家务活的平均时间调查内容光明中学八年级学生干家务活的平均时间调查方式抽样调查调查步骤1.数据

的收集(1)在光明中学八年级每班随机调查5名学生(2)统计这些学生2013年4月每天干家务活的平均时间(单位:min)结果如下(其中A表示10min,B表示20min,C表示30min)BAABBBBACBBABBCABAACABBCBABBAC2.数据的处理:

以频数分布直方图的形式呈现上述统计结果请补全频数分布直方图3.数据的分析:列式计算所随机调查学生每天干家务活平均时间的平均数(结果保留整数)调查结论光明中学八年级共有240名学生,其中大约有名学生每天干家务活的

平均时间是20min18.(6分)(2013•青岛)小明和小刚做摸纸牌游戏.如图,两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明的2分,否则小刚得1

分.这个游戏对双方公平吗?请说明理由.19.(6分)(2013•青岛)某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等.求第一次的捐款

人数.20.(8分)(2013•青岛)如图,马路的两边CF,DE互相平行,线段CD为人行横道,马路两侧的A,B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路的两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°.(1)求CD与AB之间的距离;(2)某人从车站

A出发,沿折线A→D→C→B去超市B.求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米.(参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)21

.(8分)(2013•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(

3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明)22.(10分)(2013•青岛)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商

场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超

过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.23.(10分)(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.这种利用面积关系解决问题的方法,使抽象的数

量关系因几何直观而形象化.【研究速算】提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的

乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×

43=(40+10)×40+3×7=5×4×100+3×7=2021.用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.归纳提炼:两个十位数字相同,并且个位数字之和是1

0的两位数相乘的速算方法是(用文字表述).【研究方程】提出问题:怎样图解一元二次方程x2+2x﹣35=0(x>0)?几何建模:(1)变形:x(x+2)=35.(2)画四个长为x+2,宽为x的矩形,构造图4(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+

2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x(x+2)+22∵x(x+2)=35∴(x+x+2)2=4×35+22∴(2x+2)2=144∵x>0∴x=5归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.要求参照上

述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?几何建模:(1)画长y+3,宽y+2的矩形,按图5方式

分割(2)变形:2y+5=(y+3)+(y+2)(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y

+2),即(y+3)(y+2)>2y+5归纳提炼:当a>2,b>2时,表示ab与a+b的大小关系.根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步

骤(用钢笔或圆珠笔画图并注明相关线段的长)24.(12分)(2013•青岛)已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从

点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1)解答下列问题:(1)当t为何值时,四边形AQDM是平行四边形?(2)设四边形ANPM的面积为y

(cm2),求y与t之间的函数关系式:(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.(4)连接AC,是否存在某一时刻t,使NP与A

C的交点把线段AC分成的两部分?若存在,求出相应的t值;若不存在,说明理由.山东省青岛市2013年中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.B.2.D.3.A.4.C.5.A.6.A.7.C.8.D.二

、填空题(本题满分18分共有6道题,每小题3分)9.510.甲.11.40(1+x)2=48.4.12.k=﹣213.﹣.14.6;9.四、解答题(本题满分74分,共有9道小题)17.解:从图表中可以看出C的学生数是5人,如图:每天干家务活平均时间是:(10×10+15×20+5

×30)÷30≈18(min);根据题意得:240×=120(人),光明中学八年级共有240名学生,其中大约有120名学生每天干家务活的平均时间是20min;故答案为:120.18.解:根据题意,画出树状图如下:一共有4种情况

,积是偶数的有3种情况,积是奇数的有1种情况,所以,P(小明胜)=×2=,P(小刚胜)=×1=,∵≠,∴这个游戏对双方不公平.19.解:设第一次的捐款人数是x人,根据题意得:=,解得:x=300,经检验x=300是原方程的解,20.解:(1)CD与AB之间的

距离为x,则在Rt△BCF和Rt△ADE中,∵=tan37°,=tan67°,∴BF==x,AE==x,又∵AB=62,CD=20,∴x+x+20=62,解得:x=24,答:CD与AB之间的距离为24米;(2)在Rt△BCF和Rt△ADE中,∵BC===40,AD===26,∴AD+DC+C

B﹣AB=40+20+26﹣62=24(米),答:他沿折线A→D→C→B到达超市比直接横穿马路多走24米.21.(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM,∴△ABM≌△DCM(SAS);(2)答:四边形MEN

F是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,MF=CM,∴NE=FM,NE∥FM,∴四边形MENF是平行四边形,∵△ABM≌△DCM,∴BM=CM,∵E、F分别是

BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由是:∵M为AD中点,∴AD=2AM,∵AD:AB=2:1,∴AM=AB,∵∠A=90∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=

90°,∵四边形MENF是菱形,∴菱形MENF是正方形,故答案为:2:1.22.解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)

2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,wmax=2250,故当单价为35元时,该文具每天的利润最大;(3)甲方案利润高.理由如下:甲方案中:20<x≤30,故当x=30时,w有最大值,此时w甲=2000;乙方案中:,故x的取值范围为:45≤x≤49,∵函数w=

﹣10(x﹣35)2+2250,对称轴为x=35,∴当x=45时,w有最大值,此时w乙=1250,∵w甲>w乙,∴甲方案利润更高.23.归纳提炼:十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果.【研究方程】归纳提炼:画四个

长为x+b,宽为x的矩形,构造答图1,则图中的大正方形面积可以有两种不同的表达方式:(x+x+b)2或四个长为x+b,宽为x的矩形面积之和,加上中间边长为b的小正方形面积.即:(x+x+b)2=4x(x+b)+b2∵x(x+b)=c,∴(x+x+b)2=

4c+b2∴(2x+b)2=4c+b2∵x>0,∴x=.【研究不等关系】归纳提炼:(1)画长为2+m,宽为2+n的矩形,并按答图2方式分割.(2)变形:a+b=(2+m)+(2+n)(3)分析:图中大矩形面积可表示为(2+m)(2

+n),阴影部分面积可表示为2+m与2+n的和.由图形的部分与整体的关系可知,(2+m)(2+n)>(2+m)+(2+n),即ab>a+b.24解答:解:(1)∵当AP=PD时,四边形AQDM是平行四边形,即3t=3﹣3t,t=,∴当t=s时,四边形AQDM是

平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形

ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,∴y=×AP×MN=•3t•(1+t)即y与t之间的函数关系式为y=t2+t(0<t<1).(3)假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半.此时t2+t=×3×,整理得:t

2+t﹣1=0,解得t1=,t2=(舍去)∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.(4)存在某一时刻t,使NP与AC的交点把线段AC分成的两部分,理由是:假设存在某一时刻t,使NP与AC的交点把线段AC分成的两部分,∵四边形ABCD是平行四边形,∴AD∥

BC,∴△APW∽△CNW,∴=,即=或=,∴t=或,∵两数都在0<t<1范围内,即都符合题意,∴当t=s或s时,NP与AC的交点把线段AC分成的两部分.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 132728
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?