【文档说明】第5讲 一元二次方程的应用(原卷版)-2021-2022学年九年级数学上册课堂讲义(人教版).docx,共(11)页,152.531 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-b878f3c52acca818574783b13406a185.html
以下为本文档部分文字说明:
学科教师辅导教案学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课类型TCT授课日期及时段教学内容一元二次方程的应用【学习目标】1.通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一般步骤;2.通过列方
程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力.【要点梳理】要点一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量
、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点诠释:列方程解实际问题的三个重要环节:一是整体地、系统地审题
;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.要点二、一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别
为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一
个三位数,个位上数为a,十位上数为b,百位上数为c,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x,则另两个数分别为x-1,x+1.
几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x,则另两个数分别为x-2,x+2.2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一
元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)naxb+=(a为原来数,x为平均增长率,n为增长次数,b为增长后的量.)(2)降低率问题:平均降低率公式为(1)
naxb−=(a为原来数,x为平均降低率,n为降低次数,b为降低后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间
叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数利息税=利息×税率本金×(1+利率×期数)=本息和本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常
用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.要点
诠释:列一元二次方程解应用题是把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.这是在解决实际问题时常用到的数学思想—方程思想.【典型例题】类型一、数字问题1.已知两个数的和等于12,积等于32,求这两个数是多少.1-2.有一个
两位数,个位数字与十位数字的和为14,交换数字位置后,得到新的两位数,比这两个数字的积还大38,求这个两位数.举一反三:【变式】有一个两位数等于其数字之积的3倍,其十位数字比个位数字少2,求这个两位数.类型二、平均变化率问题2.
2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2012年当年用于城市基础设施维护与建设资金达到8.45亿元.(1
)求从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率;(2)若2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率相同,预计我市这三年用于城市基础设施维护和建设资金共多少亿元?举
一反三:【变式】某产品原来每件是600元,由于连续两次降价,现价为384元,如果两次降价的百分数相同,求平均每次降价率.【变式】有一人患了流感,经过两轮传染后共有121人患了流感,按照这样的速度,第三轮传染后,患流感的人数是()A.13
31B.1210C.1100D.1000类型三、利润(销售)问题3.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品售价多少元
?类型四、形积问题4.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD,求该矩形草坪BC边的长.类型五、行程问题5.一辆汽车以20m/s的速度行驶,司机发现前方
路面有情况,紧急刹车后又滑行25m后停车.(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)?【巩固练习】一、选择题1.在一幅长80cm、宽50cm的
矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是().A.x2+130x-1400=0B.x2-65x-350=0C.x2-130x-1400=0D.x2+65x-350=02.为了
改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2,若每年的年增长率相同,则年增长率为()A.9%B.10%C.11%D.12%3.某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂
五、六月份平均每月的增长率为x,那么x满足的方程是().A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=1824.一个矩形的长是宽的3
倍,若宽增加3cm,它就变成正方形.则矩形面积是().A.B.C.D.5.为执行“两免一补”政策,某地区2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费的年平均增长率为x,则
下列方程正确的是().A.2500(1+x)2=3600B.2500x2=3600C.2500(1+x%)=3600D.2500(1+x)+2500(1+x)2=36006.一个跳水运动员从距离水面10米高的跳台向上跳起0.5米,开始做翻滚动作,它在空中每完成一个动作需要时间0.2秒,
并至少在离水面3.5米处停止翻滚动作准备入水,最后入水速度为14米/秒,该运动员在空中至多做翻滚动作().A.3个B.4个C.5个D.6个二、填空题7.某商场销售额3月份为16万元,5月份25万元,该商场这两个
月销售额的平均增长率是________.8.若两数的和是2,两数的平方和是74,则这两数为________.9.大连某小区准备在每两幢楼房之间开辟面积为300m2的一块长方形绿地,并且长比宽多10m,设长方形绿地的宽为xm,则可列方程为________.10.菱形ABC
D的一条对角线长6,AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为________.11.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人?12.小明家为响应节能减排号召,计划用两年时间,将家庭每年人均碳排放量由目前的31
25kg降至2000kg(全球人均目标碳排放量),则小明家未来两年人均碳排放量平均每年需降低的百分率是________.三、解答题13.用长12m的一根铁丝围成长方形.(1)如果长方形的面积为5m2,那么此时长
方形的长是多少?宽是多少?如果面积是8m2呢?(2)能否围成面积是10m2的长方形?为什么?(3)能围成的长方形的最大面积是多少?14.从一块长80cm,宽60cm的长方形铁片中间截去一个小长方形,使剩下的长方
形四周宽度一样,并且小24cm329cm227cm4227cm长方形的面积是原来铁片面积的一半,求这个宽度.15.常德市工业走廊南起汉寿县太子庙镇,北玉桃源县盘塘镇创元工业园,在这一走廊内的工业企业2008年完成工业总产
值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?【巩固练习】一、选择题1.元旦期间,一个
小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有()A.11人B.12人C.13人D.14人2.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是()A.
168(1+a%)2=128B.168(1-a%)2=128C.168(1-2a%)2=128D.168(1-a2%)=1283.从一块长30cm,宽12cm的长方形薄铁片的四个角上,截去四个相同的小正方形,余下部分的面积为296
cm2,则截去小正方形的边长为()A.1cmB.2cmC.3cmD.4cm4.甲、乙两人分别骑车从A、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进.乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地
还提前了40分钟,已知乙比甲每小时多行驶4千米,则甲、乙两人骑车的速度分别为()千米/时.A.2,6B.12,16C.16,20D.20,245.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克
花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为()A.20%B.30%C.50%D.120%6.从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样
升数的混合液后,这时容器里剩下纯酒精5升.则每次倒出溶液的升数为()A.5B.6C.8D.10二、填空题7.某公司在2009年的盈利额为200万元,预计2011年盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元.8.有
一间长20m,宽15m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空的宽度为________.9.一块矩形耕地大小尺寸如图1所示,要在这块地上沿东西、
南北方向分别挖3条和4条水渠.如果水渠的宽相等,而且要保证余下的可耕地面积为8700m2,那么水渠应挖的宽度是米.10.有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得的两位数乘原
来的两位数就得1855,则原来的两位数是.11.某省十分重视治理水土流失问题,2011年治理水土流失的面积为400km2,为了逐年加大治理力度,计划今、明两年治理水土流失的面积都比前一年增长一个相同的百分数,到2013年年底,使这三年治理水
土流失的面积达1324km2,则该省今、明两年治理水土流失的面积平均每年增长的百分数是.12.如图所示,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q
以2cm/s的速度向D移动.问:(1)P、Q两点从出发开始到秒时,四边形PBCQ的面积是33cm2;(2)P、Q两点从出发开始到秒时,点P与点Q间的距离是10cm.三、解答题13.如图所示,有长为40m的篱笆,一面利用墙(墙长15m),围成长方形花
圃.设花圃的长BC为xm,花圃的面积能围成182m2吗?此时BC多长?14.学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示,广场的四角为小正方形,
阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地
面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?15.如图所示,AO=OB=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A点以2cm/
s的速度向B爬行,同时另一只蚂蚁由O点以3cm/s的速度沿OC方向爬行,是否存在这样的时刻,使两只蚂蚁与O点组成的三角形的面积为450cm2?