【文档说明】《历年高考数学真题试卷》2014年全国统一高考数学试卷(理科)(大纲版)(含解析版).docx,共(23)页,204.037 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-b5133e56011507494453d11600684a18.html
以下为本文档部分文字说明:
2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B
.[0,4)C.[﹣1,0)D.(﹣1,0]3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2
+)⊥,则||=()A.2B.C.1D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过
F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=17.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为
2,则该球的表面积为()A.B.16πC.9πD.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.10.(5分)等比数列{an}中,a4=2,a5=5,
则数列{lgan}的前8项和等于()A.6B.5C.4D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.12.(5分)函数y=f(x)的图象与函数y=g(x)
的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,
则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间
(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为
整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;
(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用
设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M
、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).2014年全国统一高考数学试卷(理科)(
大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i【考点】A1:虚数单位i、复数;A5:复数的运算.菁优网版权所有【专题】5N:数系的扩充和复数.
【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B
.[0,4)C.[﹣1,0)D.(﹣1,0]【考点】1E:交集及其运算.菁优网版权所有【专题】5J:集合.【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<
4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,
b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b【考点】HF:正切函数的单调性和周期性.菁优网版权所有【专题】56:三角函数的求值.【分析】可得b=sin35°,易得b>a,c=tan35°
=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.
(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】5A:平面向量及应用.【分析】由条件利用两个向量垂直的性
质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它
们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.菁优网版权所有【专题】5O:排列组合.【分析】根
据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C
51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、
B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方
程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭
圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1【考点】62:导数及其几何意义.菁优网版权所有【专题】52
:导数的概念及应用.【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,当x=1时,f′(1)=2,即曲线y=xex﹣1在点(1,1)处切线的斜率k
=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表
面积;LR:球内接多面体.菁优网版权所有【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为
R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|
F2A|,则cos∠AF2F1=()A.B.C.D.【考点】KC:双曲线的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双
曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.1
0.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.3【考点】89:等比数列的前n项和.菁优网版权所有【专题】54:等差数列与等比数列.【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运
算性质即可得出.【解答】解:∵数列{an}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考
查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.菁优网版权所有【专题】5G:空
间角.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF
,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2
a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y
=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【考点】4R:反函数.菁优网版权所有【专题】51:函数的性质及应用.【分析】设P(x,y)为y=f(x)的反函数图象上的
任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=
x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x
)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为70.(用数字作答)【考点】DA:二项式定理.菁优网版权所有【专题】5P:二项式定理.【
分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.【解答】解:的展开式的通项公式为Tr+1=•(﹣1)r••=•(﹣1)r••,令8﹣=﹣4=2,求得r=4
,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.菁优网版权所有【
专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y
轴上的截距最大,z最大.此时zmax=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】
IV:两直线的夹角与到角问题.菁优网版权所有【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ的值,再根据tan2θ=,计算求得结果.【解答】解:设l
1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质
,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2].【考点】HM:复合三角函数的单调性.菁优网版权所有【专题】51:函数
的性质及应用;57:三角函数的图像与性质.【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解
:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+a
t+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的
位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.菁优网版权所有【专题】58:解三角形.【分析】由3acosC=2cc
osA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴
3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基
本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.【考点】8E:数
列的求和.菁优网版权所有【专题】55:点列、递归数列与数学归纳法.【分析】(1)通过Sn≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过an=13﹣3n,分离分母可得bn=(﹣),并项相加即可.【解
答】解:(1)在等差数列{an}中,由Sn≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{an}的通项为:an=17﹣4n;(2)∵an=17﹣4n,∴bn===﹣(﹣),于是Tn=b1+b2+……+bn=﹣
[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(
Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.菁优网版权所有【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂
直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA
1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1
C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,
连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠
A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、
0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.菁优网版权所有【专题】5I:概率与统计.【分析】记Ai
表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,
分别求出PXi,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5
×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣
0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X
=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难
题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′
与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.菁优网版权所有【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),
把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1(m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代
入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=
2px(p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0
),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率
为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的
中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1
=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x
)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.菁优网版权所有【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,通过讨
论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(
﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2
时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞
),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1
)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<an≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当
n=k+1时,an+1=ln(an+1)>ln(),ak+1=ln(ak+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度
较大.