《贵州中考真题数学》2017年贵州省铜仁市中考数学试卷(含解析版)

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 22 页
  • 大小 249.711 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《贵州中考真题数学》2017年贵州省铜仁市中考数学试卷(含解析版)
可在后台配置第一页与第二页中间广告代码
《贵州中考真题数学》2017年贵州省铜仁市中考数学试卷(含解析版)
可在后台配置第二页与第三页中间广告代码
《贵州中考真题数学》2017年贵州省铜仁市中考数学试卷(含解析版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有2人购买 付费阅读2.40 元
/ 22
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《贵州中考真题数学》2017年贵州省铜仁市中考数学试卷(含解析版).docx,共(22)页,249.711 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-a6df78b2b9c9d51427dbfa6f3a83ee68.html

以下为本文档部分文字说明:

2017年贵州省铜仁市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2017的绝对值是()A.2017B.﹣2017C.12017D.﹣120172.(4分)一组数据1,3,4,2,2的众数是()A.1B.2C.3D.43.(4分)单项式2x

y3的次数是()A.1B.2C.3D.44.(4分)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°5.(4分)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×1

04B.6.7×105C.6.7×106D.67×1046.(4分)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1

<S2C.S1=S2D.S1=2S27.(4分)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8B.9C.10D.118.(4分)把不等式组{2𝑥+3>13𝑥+4≥5𝑥的解集表示在数轴上如下图,正确的是()A.B.C

.D.9.(4分)如图,已知点A在反比例函数y=𝑘𝑥上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4𝑥B.y=2𝑥C.y=8𝑥D.y=﹣8𝑥10.(4分)观察下列关于自然数的式子:4×12﹣12①4×

22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064B.8065C.8066D.8067二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)5的相反数是.12.(4分)一组数据2,3,2,5,4的中位数是.13.(4分)方程1�

�−1﹣2𝑥=0的解为x=.14.(4分)已知一元二次方程x2﹣3x+k=0有两个相等的实数根,则k=.15.(4分)已知菱形的两条对角线的长分别是5cm,6cm,则菱形的面积是cm2.16.(4分)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B

处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.17.(4分)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.18.(4分)如图,在Rt△ABC中

,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=13,则tan2α=.三、解答题19.(10分)(1)计算:(12)﹣1﹣4sin60°﹣(√3﹣1.732)0+√12(2)先化简,再求值:2𝑥+6𝑥2−2

𝑥+1•𝑥−1𝑥+3,其中x=2.20.(10分)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.21.(10分)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C

(A等:成绩大于或等于80分;B等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在

的扇形的圆心角等于度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.22.(10分)如图,已知点E,F分别是平行四边形ABCD对角线BD所在直线上的两点,连接AE,CF,请你添加一个条件,使得△AB

E≌△CDF,并证明.四、解答题23.(12分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800

元,销售单价应定为每千克多少元?五、解答题24.(12分)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若𝐴𝐷𝐴𝐵=13,求sinC;(2)求证:DE是⊙O的切线.六、解答题25.(

14分)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在

抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.2017年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题(本大题共

10小题,每小题4分,共40分)1.(4分)(2017•铜仁市)﹣2017的绝对值是()A.2017B.﹣2017C.12017D.﹣12017【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣2017的绝对值是2007.故选:A.【点评】此题考查了绝对值,解题关键

是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017•铜仁市)一组数据1,3,4,2,2的众数是()A.1B.2C.3D.4【考点】W5:众数.【分析】根据众数的定义即可得到

结论.【解答】解:∵在数据1,3,4,2,2中,2出现的次数最多,∴这组数据1,3,4,2,2的众数是2,故选B.【点评】本题考查了众数的定义,熟记众数的定义是解题的关键.3.(4分)(2017•铜仁市)单项式2xy3的次数是()A.1B.2C.3D.4【考点】42:单项式

.【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式2xy3的次数是1+3=4,故选:D.【点评】此题主要考查了单项式,关键是掌握单项式次数的计算方法.4.(4分)(2017•铜仁市)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度

数是()A.30°B.60°C.120°D.61°【考点】JA:平行线的性质.【分析】由直线a∥b,c∥b,得出a∥c,∠1=60°,根据两直线平行,同位角相等,即可求得∠2的度数.【解答】解:∵直线a∥b,c∥

b,∴a∥c,∵∠1=60°,∴∠2=∠1=60°.故选B【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.5.(4分)(2017•铜仁市)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×10

5C.6.7×106D.67×104【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:670000=6.7×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形

式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.6.(4分)(2017•铜仁市)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C

′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【考点】Q2:平移的性质;JC:平行线之间的距离.【分析】根据平行线间的距离相等可知△ABC,△PB′C′的高相等,再由同底等高的三角形面积相等即可得

到答案.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应

线段平行且相等,对应角相等.7.(4分)(2017•铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8B.9C.10D.11【考点】L3:多边形内角与外角.【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.

【解答】解:180°﹣144°=36°,360°÷36°=10,则这个多边形的边数是10.故选:C.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.8.(4分)(2017•铜仁市

)把不等式组{2𝑥+3>13𝑥+4≥5𝑥的解集表示在数轴上如下图,正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀

:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3>1,得:x>﹣1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解

集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9.(4分)(2017•铜仁市)如图,已知点A在反比例函数y=𝑘𝑥上,AC⊥x轴,垂足为点C,且△AOC的面积为4

,则此反比例函数的表达式为()A.y=4𝑥B.y=2𝑥C.y=8𝑥D.y=﹣8𝑥【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义.【分析】由S△AOC=12xy=4,设反比例函数的解析式y=𝑘𝑥,则k=xy=8.【解答】解:∵S△AOC

=4,∴k=2S△AOC=8;∴y=8𝑥;故选:C.【点评】此题考查了待定系数法求反比例函数解析式,反比例函数系数k的几何意义.属于基础题,难度不大.10.(4分)(2017•铜仁市)观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律

,则第2017个式子的值是()A.8064B.8065C.8066D.8067【考点】37:规律型:数字的变化类;1G:有理数的混合运算.【分析】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然

数的平方的4倍,由此规律得出答案即可.【解答】解:4×12﹣12①4×22﹣32②4×32﹣52③…4n2﹣(2n﹣1)2=4n﹣1,所以第2017个式子的值是:4×2017﹣1=8067.故选:D.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.二

、填空题(本大题共8小题,每小题4分,共32分)11.(4分)(2017•铜仁市)5的相反数是﹣5.【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故答案为﹣5.【点评】本题考查了相反数的意义,一个数的相反数就是在这

个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.(4分)(2017•铜仁市)一组数据2,3,2,5,4的中位数是3.【考点】W4:中位数.【分析】根据中位数的定义解答即可.【解答】解:数据2,3,2,5,4的中位数是3;故答案为:3【点

评】此题考查中位数问题,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(4分)(2017•铜仁市)方程1𝑥−1﹣2𝑥=0的解为x=

2.【考点】B3:解分式方程.【分析】利用:①去分母;②求出整式方程的解;③检验;④得出结论解出方程.【解答】解:1𝑥−1﹣2𝑥=0方程两边同乘x(x﹣1),得x﹣2(x﹣1)=0x﹣2x+2=0,解得,x=2,检验:当x=2时,x(x﹣1)≠0,则x=2是分式方程的解,故答案为:2.【点评

】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.(4分)(2017•铜仁市)已知一元二次方程x2﹣3x+k=0有两个相等的实数根,则k=94.【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的一元

一次方程,解之即可得出结论.【解答】解:∵方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4k=9﹣4k=0,解得:k=94.故答案为:94.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.(4分)(2017•铜仁市)已知菱形的两条对角线

的长分别是5cm,6cm,则菱形的面积是15cm2.【考点】L8:菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×5cm×6cm=15cm2,故答案为15.【点评】本题考查了根据对角线计算菱形的

面积的方法,记住菱形的面积等于对角线乘积的一半是解题的关键.16.(4分)(2017•铜仁市)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得

AB=2米,BC=18米,则旗杆CD的高度是18米.【考点】SA:相似三角形的应用.【分析】根据相似三角形的判定推出△ABE∽△ACD,得出比例式,代入求出即可.【解答】解:如图:∵BE⊥AC,CD⊥A

C,∴BE∥CD,∴△ABE∽△ACD,∴𝐵𝐸𝐶𝐷=𝐴𝐵𝐴𝐶,∴1.8𝐶𝐷=22+18,解得:CD=18.故答案为:18.【点评】本题考查了相似三角形的判定和性质的应用,能根据相似三角形的判定定理推出两三角形相似是解此题的关键.17.(4分

)(2017•铜仁市)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为16.【考点】X6:列表法与树状图法;D1:点的坐标.【分析】首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与点P落在抛物线

y=﹣x2+x+2上的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,点P落在第一象限的可能是(1,2),(2,1)两种情形,∴则该点在第一象限的概率为212=16.故

答案为16.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比

.18.(4分)(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=13,则tan2α=34.【考点】T7:解直角三角形;KG:线段垂直平分线的性质.

【分析】根据题目中的数据和锐角三角函数可以求得tan2α的值,本题得以解决.【解答】解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=13

,设DE=x,∴AD=3a,AE=√10𝑎,∴AB=6a,∴BC=3𝑎√105,AC=9𝑎√105∴CE=9𝑎√105−√10𝑎=4𝑎√105,∴tan2α=𝐵𝐶𝐶𝐸=3𝑎√105√10𝑎−9𝑎√105

=𝐵𝐶𝐶𝐸=3𝑎√1054𝑎√105=34,故答案为:34.【点评】本题考查解直角三角形、线段垂直平分线,解答本题的关键是明确题意,找出所求问题需要的条件,利用解直角三角形的相关知识解答.三、解答题19.(10分)(2017•铜仁市)(1)计算:(12)﹣1﹣4s

in60°﹣(√3﹣1.732)0+√12(2)先化简,再求值:2𝑥+6𝑥2−2𝑥+1•𝑥−1𝑥+3,其中x=2.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂意义,立方根的意义,绝对

值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=2﹣4×√32﹣1+2√3=1(2)当x=2时,原式=2(𝑥+3)(𝑥−1)2•𝑥−1𝑥+3=2𝑥−1=2【点评】本题考查学生的运算能力

,解题的关键是熟练运用运算法则,本题属于基础题型.20.(10分)(2017•铜仁市)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.【考点】S8:相似三角形的判定.【分析】先证得𝐴𝐵𝐴𝐸=𝐴𝐶𝐴𝐷,然后根据相似

三角形的判定定理即可证得结论.【解答】证明:∵AB=20.4,AC=48,AE=17,AD=40.∴𝐴𝐵𝐴𝐸=20.417=1.2,𝐴𝐶𝐴𝐷=4840=1.2,∴𝐴𝐵𝐴𝐸=𝐴𝐶𝐴𝐷,∵∠BAC=∠EAD

,∴△ABC∽△AED.【点评】本题重点考查了相似三角形的判定定理,本题比较简单,注要找准相似的两个三角形就可以了.21.(10分)(2017•铜仁市)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B等:

成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇

形的圆心角等于108度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数,计算即可解决问题;(2)求出A组人数即可解决问题;(3)用样本估计作

图的思想解决问题即可;【解答】解:(1)抽查了部分学生的总人数为25÷50%=50(人),A组人数=50﹣25﹣10=15(人),条形图如图所示:(2)扇形统计图中A等所在的扇形的圆心角为360°×(1﹣20

%﹣50%)=108°,故答案为108.(3)1000×4050=800(人),答:估计体育测试众60分以上(包括60分)的学生人数有800人.【点评】本题考查条形统计图、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

22.(10分)(2017•铜仁市)如图,已知点E,F分别是平行四边形ABCD对角线BD所在直线上的两点,连接AE,CF,请你添加一个条件,使得△ABE≌△CDF,并证明.【考点】L5:平行四边形的性质;KB:全等三角形的判

定.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根据SAS证两三角形全等即可.【解答】解:添加的条件是DE=BF,理由是:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴

BE=DF,∵在△ABE和△CDF中{𝐴𝐵=𝐶𝐷∠𝐸𝐵𝐴=∠𝐹𝐷𝐶𝐵𝐸=𝐷𝐹,∴△ABE≌△CDF(SAS).【点评】本题考查了平行四边形的性质和全等三角形的判定的应用,通过做此题培养了学生的分析问题和解决问题的能力,也培养了学生的发散思维能

力,题目比较好,是一道开放性的题目,答案不唯一四、解答题23.(12分)(2017•铜仁市)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(

2)要使销售利润达到800元,销售单价应定为每千克多少元?【考点】AD:一元二次方程的应用;FH:一次函数的应用.【分析】(1)当20≤x≤80时,利用待定系数法即可得到y与x的函数表达式;(2)根据销售利润达到800元,可得方程(x﹣20)(﹣

x+80)=800,解方程即可得到销售单价.【解答】解:(1)当0<x<20时,y=60;当20≤x≤80时,设y与x的函数表达式为y=kx+b,把(20,60),(80,0)代入,可得{60=20𝑘+𝑏0=80𝑘+𝑏,解得{𝑘=−1𝑏=

80,∴y=﹣x+80,∴y与x的函数表达式为y={60(0<𝑥<20)−𝑥+80(20≤𝑥≤80);(2)若销售利润达到800元,则(x﹣20)(﹣x+80)=800,解得x1=40,x2=60,∴要使销售利润达到

800元,销售单价应定为每千克40元或60元.【点评】本题主要考查了一元二次方程的应用以及一次函数的应用,列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.五、解答题2

4.(12分)(2017•铜仁市)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若𝐴𝐷𝐴𝐵=13,求sinC;(2)求证:DE是⊙

O的切线.【考点】MD:切线的判定;T7:解直角三角形.【分析】(1)根据圆周角定理可得∠ADB=90°,再利用同角的余角相等证明∠C=∠ABD,进而可得答案.(2)先连接OD,根据圆周角定理求出∠A

DB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.【解答】(1)解:∵AB为直径,∴∠ADB=90°,∴∠AB

D+∠BAD=90°,∵∠ABC=90°,∴∠C+∠BAC=90°,∴∠C=∠ABD,∵𝐴𝐷𝐴𝐵=13,∴sin∠ABD=13,∴sinC=13;(2)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵E为BC的中点,∴DE=BE=CE,∴∠EDB=∠E

BD,∵OD=OB,∴∠ODB=∠OBD,∵∠ABC=90°,∴∠EDO=∠EDB+∠ODB=∠EBD+∠OBD=∠ABC=90°,∴OD⊥DE,∴DE是⊙O的切线.【点评】本题考查了切线的判定,直角三角形的性质,圆周角定理的应用和三角函数,解此题的关键是求出∠O

DE=90°,注意:经过半径的外端,并且垂直于这条半径的直线是圆的切线.六、解答题25.(14分)(2017•铜仁市)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称

轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得

∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)分两种情况:①当△P1MP2≌△CMB时,取对称点可得点

P1,P2的坐标;②当△BMC≌△P2P1M时,构建▱P2MBC可得点P1,P2的坐标;(3)如图3,先根据直径所对的圆周角是直角,以BC为直径画圆,与对称轴的交点即为点Q,这样的点Q有两个,作辅助线,构建相似三角形,证明△BDQ1∽△Q1EC,列比例式,可得点Q的坐

标.【解答】解:(1)把A(﹣1,0),B(0,﹣2)代入抛物线y=x2+bx+c中得:{1−𝑏+𝑐=0𝑐=−2,解得:{𝑏=−1𝑐=−2,∴抛物线所表示的二次函数的表达式为:y=x2﹣x﹣2;(2)如图1,P1与A重合,P2与B关于l对称,∴MB=P2M,P1M=CM,P1P2=BC

,∴△P1MP2≌△CMB,∵y=x2﹣x﹣2=(x﹣12)2﹣94,此时P1(﹣1,0),∵B(0,﹣2),对称轴:直线x=12,∴P2(1,﹣2);如图2,MP2∥BC,且MP2=BC,此时,P1与C重合,∵MP2=BC,MC=MC,∠P2MC=∠

BP1M,∴△BMC≌△P2P1M,∴P1(2,0),由点B向右平移12个单位到M,可知:点C向右平移12个单位到P2,当x=52时,y=(52﹣12)2﹣94=74,∴P2(52,74);(3)如图3,存在,

作法:以BC为直径作圆交对称轴l于两点Q1、Q2,则∠BQ1C=∠BQ2C=90°;过Q1作DE⊥y轴于D,过C作CE⊥DE于E,设Q1(12,y)(y>0),易得△BDQ1∽△Q1EC,∴𝐵𝐷𝑄1�

�=𝐷𝑄1𝐸𝐶,∴2+𝑦2−12=12𝑦,y2+2y﹣34=0,解得:y1=−2−√72(舍),y2=−2+√72,∴Q1(12,−2+√72),同理可得:Q2(12,−2−√72);综上所述,点Q的坐标是:(12

,−2+√72)或(12,−2−√72).【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、圆周角定理以及三角形全等的性质和判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的对称性解决三角形全等问题;(3)

分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用二次函数的对称性,再结合相似三角形、方程解决问题是关键.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 128952
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?