【文档说明】专题12.3 角的平分线的性质(教师版)-【帮课堂】2022-2023学年八年级数学上册同步精品讲义(人教版).docx,共(48)页,2.889 MB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-a38d9778616246e1a65fc211940f29ad.html
以下为本文档部分文字说明:
专题12.3角的平分线的性质1.会用尺规作一个角的平分线,知道作法的合理性.2.探索并证明角的平分线的性质.3.掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解决简单的问题.知识点01角的平分线及其性
质知识点1.尺规作角平分线尺规作角平分线方法(重要):已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3
)画射线OC.射线OC即为所求.2.角平分线的性质定理:角的平分线上的点到角的两边的距离相等。【微点拨】应用角平分线的性质定理所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.角平分线的性质定理的作用是证明线段相等.【知识拓展1】角平分线
的作法及应用例1.(2022·陕西西安·八年级期中)如图,在ABC中,90C=.请用尺规在边BC上作一点P,使点P到点C的距离与点P到边AB的距离.(保留作图痕迹,不写作法).知识精讲目标导航【答案】画图见解析【分析】作∠BA
C的平分线交BC于点P即可求解.【详解】解:如图,点P即为所求.【点睛】本题考查的是作图-基本作图,以及角平分线的性质,熟知角平分线的作法是解答此题的关键.【即学即练】1.(2021·江苏南通市·八年级期末)如图①,已知ABC,用尺规作它的角平分线(如图②).尺规作图具体步骤如
下,第1步:以B为圆心,以r为半径画弧,分别交射线,BABC于点,DE;第2步:分别以,DE为圆心,以m为半径画弧,两弧在ABC内部交于点F;第3步:画射线BF.射线BF即为所求.下列说法正确的是()A.r有最小限制,m无限制B.10,2rmDE的长C.1
0,2rmDE…的长D.连接DE,则DE垂直平分BF【答案】B【分析】直接根据尺规作图作角平分线的方法即可得出结论10,2rmDE的长.【详解】解:以B为圆心画弧时,半径r必须大于0,分别以D,
E为圆心,以m为半径画弧时,m必须大于12DE的长,否则两弧没有交点.故选:B.【点睛】本题考查了角平分线的作图方法,熟练掌握作角平分线的步骤及方法是解题的关键.2.(2022·河南洛阳·八年级期末)学习角的平分线之后,老
师留了一道思考题:还有没有其他作角平分线的方法(不限于圆规和直尺).下面是两位同学给出的两种方法:(1)同学1:我是用三角板按下面方法画角平分线:如图1,在已知的AOB上,分别取OCOD=.再分别过点C,D作OA,OB的垂线,交点为P,画射线OP,则OP平分AO
B.请你帮这位同学证明:OP平分AOB.(2)同学2:我是用圆规和直尺按下面方法画角平分线:如图2,以O为圆心,以任意长为半径画弧与OA,OB交于点C,D,再以任意长为半径画弧与OA,OB交于点E,F,连接CF,DE交于点P,连接OP,则OP平分AOB.你认
为同学2这种作角平分线的方法正确吗?若正确,请你给出证明过程;若错误,说出你的理由.【答案】(1)见解析(2)同学2这种作角平分线的方法正确.证明过程见解析【分析】(1)由作法得OCOD=,则可判断RtOPCRtOP
D△≌△,从而得到OP平分AOB;(2)由作法得OCOD=,OEOF=则可判断OCFODE△≌△,可得到CEPOFP=,因此可证明CEPDPF△≌△,再根据EPFP=,可得OEPOFP△≌△,从而得到OP平分AOB.(1)证明:由作法得OCOD=,在Rt
OPC△和RtOPD中,OPOPOCOD==,∴()RtOPCRtOPDHL△≌△,∴COPDOP=,∴OP平分AOB;(2)解:同学2这种作角平分线的方法正确.理由如下:由作法得OCOD=,OEOF=,可知CEOF=.在OCF
△和ODE中,OCODCOFDOEOFOE===,∴()OCFODESAS△≌△,∴CEPOFP=,在CEP△和DPF中,CEPOFPCPECPECEOF===,∴()CEPDPFAAS△≌△,∴EPFP=,在OEP与O
FP△中,OEOFEPPFOPOP===,∴()OEPOFPSSS△≌△,∴EOPFOP=.即OP平分AOB.【点睛】本题考查了作图——基本作图,全等三角形的判定与性质、角平分线的性质,熟练掌握5种基本作图(作已知角的角平分线)是解题的关键.【知识拓展2】角平分线的性质的运用例2
.(2022·黑龙江齐齐哈尔·八年级期末)如图,ABC的外角ACD的平分线CE与内角ABC的平分线BE交于点E,若40BEC=,则CAE的度数为()A.65°B.60°C.55°D.50°【答案】D【分析】过点E作EF⊥BA交BA延长线于点F,EM⊥AC于点M,EN⊥BC交BC延
长线于点N,设∠ECD=x°,根据角平分线的性质定理,可得EF=EM,再由三角形外角的性质,可得∠BAC=80°,从而得到∠CAF=100°,再由Rt△EFA≌Rt△EMA,即可求解.【详解】如图,过点E作EF⊥BA交BA延长线于点F,
EM⊥AC于点M,EN⊥BC交BC延长线于点N,设∠ECD=x°,∵CE平分∠ACD,∴∠ACE=∠ECD=x°,EM=EN,∵BE平分ABC,∴∠ABE=∠EBC,EF=EN,∴EF=EM,∵∠BEC=40°,∴∠ABE=∠EBC=∠ECD–∠BEC=(
x-40)°,∴∠BAC=∠ACD–∠ABC=2x°-(x°-40°)-(x°-40°)=80°,∴∠CAF=100°,在Rt△EFA和Rt△EMA中,∵EA=EA,EM=EF,∴Rt△EFA≌Rt△EMA
(HL),∴∠FAE=∠EAC=50°.故选:D【点睛】本题主要考查了角平分线的性质定理,全等三角形的判定和性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.【即学即练】2.(2022·黑龙江哈尔滨·七年级期末)如图,∠C=90°,
AC=BC,AB=8cm,BD是△ABC的角平分线,DE⊥AB于点E,则△AED的周长是______cm.【答案】8【分析】证明DEDC=,再证明()≌RtDCBRtDEBHL△△,得到:==BCBEAC,即可求出△AED的周长为:8cm++=+==ADD
EAEACAEAB.【详解】解:∵BD是△ABC的角平分线,DE⊥AB,90C=,∴DEDC=,在RtDCB△和RtDEB中,DCDEDBDB==∴()≌RtDCBRtDEBHL△△,∴BCBE=,∵ACBC=,∴ACBE=,
∴△AED的周长为:8cm++=+==ADDEAEACAEAB.故答案为:8【点睛】本题考查角平分线的性质定理,三角形全等的判定及性质,解题的关键是掌握角平分线的性质定理:角平分线上的点到角两边的距离相等,证明==BCBEA
C.【知识拓展3】角平分线的性质与等积法例3.(2022·重庆·八年级课时练习)如图,ABC的三边AB,BC,CA的长分别是10,15,20,其三条角平分线相交于点O,连接OA,OB,OC,将ABC分成三个三角形,则::ABOBCOCAOSSS等于__________.【答案】2:3:4【分析】过
点O分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O分别向BC、BA、AC作垂线段交于D、E、F三点.∵CO、BO、AO分别平分、、ACBCBABAC∴ODOEOF==∵12ABOSABOE=,12
△BCOSBCOD=,12△CAOSACOF=∴::::10:15:202:3:4ABOBCOCAOSSSABBCAC===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.【即学即练】3.(2022·山东青
岛·八年级期中)如图,在△ABC中,∠BAC和∠ABC的角平分线交于点O,AB=6cm,BC=9cm,△ABO的面积为182cm,则△BOC的面积为()2cmA.27B.54C.272D.108【答案】A【分析】过点O作OD⊥BC于D,OE⊥AB于E
,先由根据△ABO的面积为182cm,求出OE长,再根据角平分线的性质,得出OD=OE,求出OD长,然后根据三角形面积公式求解即可.【详解】解:如图,过点O作OD⊥BC于D,OE⊥AB于E,∴S△ABO=12ABOE=18cm2,∵AB=6cm,∴OE=
6cm,∵OB是∠ABC的角平分线,OD⊥BC于D,OE⊥AB于E,∴OD=OE=6cm,∴S△BOC=11962722BCOD==(cm2),故选:A.【点睛】本题考查角平分线的性质,三角形面积,熟练掌握
角平分线的性质是解题的关键.【知识拓展4】角平分线的性质与实际应用例4.(2022·河南·八年级月考)如图为三条两两相交的公路,某石化公司拟建立一个加油站,计划使得该加油站到三条公路的距离相等,则加油站的可选位置有()A.1个B.2个C.3个D.4个
【答案】C【分析】根据角平分线的性质,作三角形的三外角平分线,有三个交点,内角平分线有一个交点,但除去深水湖泊那个交点,共有3个.【详解】解:根据角平分线上的点到角两边距离相等可知,三角形内心(即三角形内角角平分线的交点)为1个位置,另外两外角平分线的交点
,到三条公路的距离也相等,可找到3个,但因为有1个在深水湖泊,所以,有3个,故选:C.【点睛】本题考查了角平分线的性质,熟记角平分线上的点到角的两边距离相等是解题的关键.【即学即练】4.(2022·山西吕梁市·八年级期中)如图是体育场的一块三角形休息区
,要在休息区内设一个供水台供大家休息饮水,要使供水台到AB,BC,AC的距离相等,供水台应该选在()A.ABC三条角平分线的交点处B.ABC三条中线的交点处C.ABC三条高线所在的直线的交点处D.ABC三条边的垂直平分线的交点处【答案】A【分析】由于供水台到AB,BC,AC的距离相等,所以
根据角平分线上的点到角两边的距离相等,可知是ABC三条角平分线的交点,由此即可确定供水台位置.【详解】∵供水台到AB,BC,AC的距离相等,∴供水台应该选在ABC三条角平分线的交点处,故选A.【点睛】本题考查的是角平分线的性质的实际应用,熟知角的平分线上的点到角的两边的距离相等是解答此题的关
键.知识点02角平分线的判定知识点1.角平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上。定理的几何表述:∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上.图1图22.三角形的内角平分线结论:三角形
的三条角平分线交于一点,并且这点到三边的距离相等.已知如图2,△ABC的角平分线BM,CN相交于点P,则点P到三边AB,BC,CA的距离相等.【微点拨】1、已知AD是三角形ABC的角平分线,则有:BDABCDAC=(证明思路:ABDAC
DSABSAC=,ABDACDSBDSCD=)2、已知:三角形ABC的角平分线交于一点P,则有:::::ABPBCPACPSSSABBCAC=。【知识拓展1】角平分线的判定(实际应用)例1.(2021·广东清新
·八年级期中)如图,点P是ABC内一点,PD⊥BC,PE⊥AC,PF⊥AB,且PDPEPF==,则点P是()A.ABC三边垂直平分线的交点B.ABC三条角平分线的交点C.ABC三条高所在直线的交点D.ABC三条中线的交点【答案】B【分析】连接PA、PB、PC,根据角平分线的性质可知:角平分线上的点
到角两边的距离相等,进而即可得到答案.【详解】解:连接PA、PB、PC.∵PD=PF,∴PB是∠ABC的角平分线,同理PA、PC分别是∠BAC,∠ACB的角平分线,故P是△ABC角平分线交点,故选:B.【点睛】本题考查了角
平分线的判定定理,能熟记角平分线判定定理是解此题的关键,注意:在角的内部,到角的两边距离相等的点在角的平分线上;角平分线上的点到角两边的距离相等.【即学即练】1.(2022•夏津县八年级期末)小明同学在学习了
全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两
边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解题思路】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=P
F,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB;【解答过程】解:如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(
角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.【知识拓展2】角平分线的判定的运用例2.(2021·安徽安庆市·八年级期末)如图O是ABC内的一点,且O到三边AB、BC、CA的距离==OFODOE.若70A=,则BOC
().A.125°B.135°C.105°D.100°【答案】A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可
得解.【详解】解:∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12×110°=55°,在△OBC中,∠BO
C=180°-(∠OBC+∠OCB)=180°-55°=125°.故选:A.【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用.【即学即练】2.(2022·广东·八年级期末)如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则
∠ABD=_____°.【答案】20【分析】利用三角形的内角和定理先求解ABC,再利用角平分线的性质定理的逆定理证明:BD平分,ABC从而可得答案.【详解】解:9050AC==,,180905040AB
C=−−=,90,,ADEBCDADE=⊥=,BD平分,ABC1202ABDABC==,故答案为:20.【点睛】本题考查的是三角形的内角和定理,角平分线的定义及性质定理的逆定理,掌握角平分线的性质定理的逆定理是解题的关键.【知识拓展3】角平分线
的判定(证明)例3.(2022·绵阳市·八年级专题练习)如图,在ABC中,ABC的平分线与ABC的外角ACE的平分线交于点P,PDAC⊥于点D,PHBA⊥,交BA的延长线于点H.(1)若点P到直线BA的距离为5cm,求点P到直线BC的距
离;(2)求证:点P在HAC的平分线上.【答案】(1)5cm;(2)见解析.【分析】(1)过点P作PFBE⊥于F,根据角平分线的性质即可解答;(2)根据角平分线的性质得到PFPD=,进而得到PDPH=,根据角平分线的判定定理即可证明.(1)解:过点P作PFBE⊥于F,点P
在ABC的平分线,PHBA⊥,PFBE⊥,5PFPH==cm,即点P到直线BC的距离为5cm;(2)证明:点P在ACE的平分线,PDAC⊥,PFBE⊥,PFPD=,同理:PFPH=,PDPH=,PDAC⊥,PHBA⊥,
点P在HAC的平分线上.【点睛】本题考查了角平分线的性质与判定,熟知角平分线的性质定理和判定定理,根据题意添加辅助线是解题关键.【即学即练】3.(2022·江苏·八年级专题练习)已知:如图,在△ABC中,角平分线BM与角平分线CN相交于点P,过点P分别作AB,BC,AC的垂线,垂足分别为D,E
,F.(1)求证:PD=PE=PF;(2)点P在∠BAC的平分线上吗?说明理由.【答案】(1)证明见解析(2)在,理由见解析【分析】(1)根据角平分线的性质定理可得,PEPDPEPF==,由此即可得证;(2)根据,,PDABPFACPDPF⊥⊥=,利用角平分线的判定即可得出结论.
(1)证明:BM平分ABC,,PEBCPDAB⊥⊥,PEPD=,CN平分ACB,,PEBCPFAC⊥⊥,PEPF=,PDPEPF==.(2)解:点P在BAC的平分线上,理由如下:如图,连接PA,,,PDABPFACPDP
F⊥⊥=,点P在BAC的平分线上.【点睛】本题考查了角平分线的判定与性质定理,熟练掌握角平分线的判定与性质定理是解题关键.考法01角平分线的性质与全等【典例1】(2021•盐田区校级期中)已知:如图,OC是∠AOB的平分线,P是OC上的
一点,PD⊥OA,PE⊥OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.能力拓展【解题思路】根据角平分线上的点到角的两边距离相等可得PD=PE,利用“HL”证明Rt△OPD和Rt△OPE全等,根据全等
三角形对应边相等可得OD=OE,再利用“边角边”证明△ODF和△OEF全等,然后利用全等三角形对应边相等证明即可.【解答过程】证明:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(
HL),∴OD=OE,∵OC是∠AOB的平分线,∴∠DOF=∠EOF,在△ODF和△OEF中,,∴△ODF≌△OEF(SAS),∴DF=EF.变式1.(2022·广西南宁市·八年级期末)已知点C是∠MAN平分线上一
点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下
,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)见解析;(2)AD﹣AB=2BE,理由见解析;(3)3.【分析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△
BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OH
B=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.【详解】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=18
0°,∴∠CBE=∠CDF,在△BCE和△DCF中,90CBECDFCEBCFDCECF====,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD﹣AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB
,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,90CBECDFCEBCFDCECF====,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+
DF=AB+BE+DF=AB+2BE,∴AD﹣AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,BHBGOBHOBGOBOB===,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB
,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°
,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,DOHDOFODODODHODF===,∴△ODH≌△ODF(ASA),
∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【点睛】本题考查了角平分线的性质,三角形全等的判定和性质,关键是依照基础示例引出正确辅助线.考法02角平分线的性质与最值【典例2】(2022•寿阳县八年级期末)如图,点P在AOB的平分线上,60AOB=,PDOA⊥
于D,点M在OP上,且6DMMP==,若C是OB上的动点,则PC的最小值是.【分析】根据角平分线的定义可得1302AOPAOB==,求出4DMOM==,再根据直角三角形的性质求得162PDOP==,然后根据
角平分线的性质和垂线段最短得到结果.【解析】P是AOB角平分线上的一点,60AOB=,1302AOPAOB==,60DPO=,6PMDM==,60MDPDPM==,90PDO=,30ODMAOP==,6OMDM==,12OP=,162PDOP=
=,点C是OB上一个动点,PC的最小值为P到OB距离,PC的最小值6PD==,故答案为:6.变式1.(2022•岐山县九年级二模)如图,在RtABC中,90C=,BAC的平分线交BC于点D,2CD=,Q为AB上一动点,则DQ的最小值为()A.2
B.22C.3D.52【分析】作DHAB⊥于H,如图,根据角平分线的性质得到2DHDC==,然后根据垂线段最短求解.【解析】作DHAB⊥于H,如图,AD平分BAC,DHAB⊥,DCAC⊥,2DHDC==,Q为AB上一动点,DQ的最小值为DH的长,即DQ的最小值为2.故选:
A.题组A基础过关练1.(2022·绵阳市·八年级期末)如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PDB.OC=ODC.OC=OPD.∠CPO=∠DPO【答案】C
【分析】根据角平分线的性质,可证明△ODP≌△OCP,进而可判断出错误选项.【详解】解:∵OP平分∠BOA,PC⊥OA,PD⊥OB,∴PC=PD,∠DOP=∠COP,且OP=OP,故A正确,∴△ODP≌△OCP(HL),∴OD=OC,∠CPO=∠DPO,故B,D正确,故选C.【点睛】本题考查全
等三角形的判定,角平分线的性质,能够熟练掌握角平分线的性质是解决本题的关键.2.(2022·广东揭阳·八年级期中)如图,OP平分MON,PAON⊥于点A,点Q是射线OM上的一个动点,则下列结论正确的是()A.PAPQ=B.PAPQC.PAPQD.PAPQ【答案】D【分析】
连接PQ,当PQ⊥OM时,根据角平分线的性质得出PQ=PA,利用直线外一点到直线的垂线段最短即可得出结论.【详解】解:连接PQ,分层提分当PQ⊥OM时,∵OP平分∠MON,PQ⊥OM,PA⊥ON,∴PQ=PA,此时点P
到OM的距离PQ最小,∴PA≤PQ,故选:D.【点睛】题目主要考查角平分线的性质,直线外一点到直线的距离中,垂线段最短,理解这两个性质定理是解题关键.3.(2022·陕西渭南·八年级期中)如图,在RtABC中,90C=,AD平分BAC,交BC于点D,10AB=,
15ABDS=,则CD的长为()A.3B.4C.6D.8【答案】A【分析】过点D作DEAB⊥于E,根据角平分线上的点到角的两边距离相等可得DECD=,然后利用△ABD的面积列式计算即可得解.【详解】解:如图,过点D作DEAB⊥于E,
∵∠C=90°,AD平分∠BAC,∴DECD=,∴11101522SABDABDEDE=?醋=V,解得3DE=,∴3CD=;故选:A.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.4.(2022·山东菏泽·八年级期中)如图,点O在△ABC
内,且到三边的距离相等,若60A=,则∠BOC的度数为()A.150°B.120°C.110°D.100°【答案】B【分析】由题意易得OB、OC分别平分∠ABC、∠ACB,然后根据角平分线的定义及三角形内
角和可进行求解.【详解】解:∵点O到△ABC三边的距离都相等,∴OB、OC分别平分∠ABC、∠ACB,∴11,22OBCABCOCBACB==,∵60A=,∴180120ABCACBA+=−=,∴60OBCO
CB+=,∴180120BOCOBCOCB=−−=;选B.【点睛】本题主要考查角平分线的判定定理及三角形内角和,熟练掌握角平分线的判定定理及三角形内角和是解题的关键.5.(2021·山东滨州市·
八年级月考)如图,123,,lll是三条两两相交的公路,现需建一个仓库,要求仓库到三条公路距离相等,则仓库的可能地址有()处.A.1B.2C.3D.4【答案】D【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点,把三条公路的中心部位看作三角形,那
么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处,共四处,故选:D..【点睛】此题考查角平分线的性质:角平分线
上的点到角两边的距离相等,熟记性质是正确解题的关键.6.(2022·四川成都·八年级期末)已知:如图,D是BC上一点,AD平分∠BAC,AB=5,AC=4,若ABDSm=V,则S△ADC=_____(用m的代数式表示).【答案】45m##0.8m【分析】过点D作DE
⊥AB于点E,DF⊥AC于点F,根据角平分线的性质定理可得DE=DF,从而得到::ADCADBSSACAB=,即可求解.【详解】解:如图,过点D作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,∴DE=DF,∴11::2:2ADCADBSSACDF
ABDEACAB==∵AB=5,AC=4,ABDSm=V,∴:4:5ADCSm=,∴45ADCSm=.故答案为:45m【点睛】本题主要考查角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.(2021·湖北荆门·八年级期中)如图
,AD平分∠BAO,D(0,-3),AB=10,则ABD的面积为____.【答案】15【分析】过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,即可求得△ABD的面积.【详解】解:如图,过D作
DE⊥AB于E,∵AD平分∠BAO,∠AOD=90°,D(0,-3),∴DE=DO=3,∵AB=10,∴△ABD的面积=12AB•DE=12×10×3=15.故答案为:15.【点睛】本题考查了角平分线的性质,能根据角平分线性质得出DE=OD是解此题的关键,解题时注意:角平分线
上的点到这个角两边的距离相等.8.(2022·广西百色·八年级期末)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB;垂足为E.求证:(1)CD=BE.(2)ABACCD=+。【答案】
(1)见解析(2)见解析【分析】(1)先根据题意判断出△ABC是等腰直角三角形,故∠B=45°,再由DE⊥AB可知△BDE是等腰直角三角形,故DE=BE,再根据角平分线的性质即可得出结论;(2)先根据HL定理得出Rt△ACD≌Rt△AED,故AE=AC
,再由CD=BE可得出结论.(1)证明:在ABC中,ACBC=,90C=,ABC是等腰直角三角形,45B=,DEAB∵⊥,BDE是等腰直角三角形,DEBE=.AD是ABC的角平分线,CDDE=,C
DBE=.(2)证明:AD是ABC的角平分线,DEAB⊥,CDDE=,在Rt△ACD与Rt△AED中,ADADCDDE==,∴Rt△ACD≌Rt△AED(HL),AEAC=,由1()知CDBE=,ABAEBEACCD=+=+.【点睛】本题考查
的是角平分线的性质,全等三角形的判定与性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.9.(2022·辽宁抚顺·八年级期末)如图,在ABC中,ABBC=,点D在AB的延长线上.(1)尺规作图,作CBD的角平分线;(保留作图痕迹,不写作法)(2)补全图形,取BC的中点E,连
接AE并延长交CBD的平分线于点F;(3)判断线段BF与AC的位置关系是,数量关系是.【答案】(1)见解析;(2)见解析;(3)位置关系是平行,数量关系是相等【分析】(1)按照角的平分线的尺规作图步骤进行即可;(2)先确
定BC的中点,后用直尺依次完成操作即可;(3)根据内错角相等,两直线平行,判定位置关系,利用三角形全等,判定数量关系.【详解】(1)如图所示:(2)如图所示:(3)∵AB=BC,∴∠BAC=∠C,∴∠CB
D=∠BAC+∠C=2∠C,∵BF平分∠CBD,∴∠CBD=∠CBF+∠DBF=2∠CBF,∴∠CBF=∠C,∴BF∥AC;∵CE=BE,∠AEC=∠FEB,∴△ACE≌△FEB,∴AC=FB,故答案为:平行;相等.【点睛】本题考查了尺规作图,平行
线的判定,三角形外角的性质,三角形全等,熟练掌握平行线的判定,三角形全等的判定和性质是解题的关键.10.(2022·湖北·荆州市八年级期中)如图(1),AD平分BAC,DBAB⊥于B,DCAC⊥于C,易知:DBDC=.①探究:如图(2),
AD平分BAC,180ABDACD+=,90ABD,求证:DBDC=.②探究:如图(3)在四边形ABDC中,180ABDACD+=,90ABD,且DBDC=,求证:AD平分BAC.【答案】①见解析;②见解析【分析】①作DN⊥AC于N,DM
⊥AB于M,欲证明DB=DC,只要证明△DNC≌△DMB即可;②作DN⊥AC于N,DM⊥AB于M,证得△DNC≌△DMB,得到DM=DN,根据角平分线的判定即可得到结论.【详解】证明:①过点D作DN⊥AC于N,DM⊥AB于M,如图2,∵AD平分∠BAC,D
N⊥AC,DM⊥AB,∴DM=DN,∵∠B+∠ACD=180°,∠NCD+∠ACD=180°,∴∠B=∠NCD,在△DNC和△DMB中,90BNCDDNCDMBDMDN====,∴△DNC≌△DMB,∴DC=DB;②过点D作DN⊥AC于N,DM⊥AB于M,
如图3,∵∠ABD+∠ACD=180°,∠NCD+∠ACD=180°,∴∠ABD=∠NCD,在△DNC和△DMB中,90ABDNCDDNCDMBDBDC====,∴△DNC≌△DMB,∴DM=DN,∵DN⊥AC,DM⊥AB,∴AD平分∠BAC.【点睛】本题考查全等三角形的判定
和性质、角平分线的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形.题组B能力提升练1.(2022·吉林四平·八年级期末)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B,下列四个结论正确的个数是()①PA=PB②P
O平分∠APB③OA=OB④OP垂直平分AB.A.1B.2C.3D.4【答案】D【分析】根据角平分线的性质可得PA=PB,然后依据HL证明Rt△AOP≌Rt△BOP,则OA=OB,∠OPA=∠OPB,
进而可得OP是AB的垂直平分线,则结论可一一判断.【详解】解:∵OP平分∠AOB,PA⊥OA于A,PB⊥OB于B,∴PA=PB,故①正确;在Rt△PAO和Rt△PBO中,PAPBOPOP==,∴Rt△PAO≌Rt△PBO(HL),∴OA=OB,∠OPA=∠OPB,故②③正确;∵O
A=OB,AP=BP,∴OP是AB的垂直平分线,故④正确;故选:D.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的判定,熟练掌握全等三角形的性质和判定定理是解题的关键.2.(2022·河
北·八年级课时练习)如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是()A.24B.27C.32D.36【答案】
C【分析】利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.【详解】解:∵AD=DE,S△BDE=96,∴S△ABD=S△BDE=96,过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,∵AD平分∠BAC,∴
DG=DF,∴△ACD与△ABD的高相等,又∵AB=3AC,∴S△ACD=13S△ABD=196323=.故选:C.【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.3.(2022·北京·八年级专题练习)如图,在△ABC中,∠C=90°,以点B为圆
心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、N为圆心,以大于12MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12∠ABC;③BC=BE;④AE=BE中,一定
正确的是()A.①②③B.①②③④C.②④D.②③④【答案】A【分析】由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,【详解】解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°
,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,DEDCBDBD==,∴△BCD≌△BED,∴BC=BE,故③正确.故选A.【点睛】本题考查了角
平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.4.(2022·河南郑州·八年级期末)如图,AIBICI、、分别平分,,,BACABCACBIDBCABC⊥、△的周长为18,3ID=,则ABC的面积
为()A.18B.30C.54D.27【答案】D【分析】过点I作IE⊥AB于E,IF⊥AC于F,然后根据角平分线上的点到角的两边的距离相等的性质可得ID=IE=IF,再根据三角形面积计算即可得解.【详
解】解:如图,过点I作IE⊥AB于E,IF⊥AC于F,∵∠ABC、∠ACB的平分线,ID⊥BC,∴ID=IE,ID=IF,∴ID=IE=IF=3,∵△ABC的周长为18,∴△ABC的面积=12(AB+BC+AC)×3=12×18×3=27.故选:D.【点睛】本题
主要考查了角平分线的性质,三角形的面积,熟记性质是解题的关键.5.(2022·河南·八年级课时练习)如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=18cm,AB=11cm,那么DE的长度为________________
_____cm.【答案】3.5【分析】过C点作CF⊥AB于F,如图,根据角平分线的性质得到CF=CE,再证明Rt△ACE≌Rt△ACF得到AF=AE,证明△CBF≌△CDE得到BF=DE,然后利用等线段代换,利用AF=AE
得到11+DE=18-DE,从而可求出DE的长.【详解】解:过C点作CF⊥AB于F,如图,∵AC平分∠BAD,CE⊥AD,CF⊥AB,∴CF=CE,在Rt△ACE和Rt△ACF中,ACACCFCE==,∴Rt△ACE≌Rt△ACF(HL),∴AF=AE,∵∠ABC+∠D=180°,∠ABC
+∠CBF=180°,∴∠CBF=∠D,在△CBF和△CDE中,CBFDCFBCEDCFCE===,∴△CBF≌△CDE(AAS),∴BF=DE,∵AF=AE,∴AB+BF=AD-DE,即11+D
E=18-DE,∴DE=3.5cm.故答案为:3.5.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质.6.(2022·广西来宾·八年级期中)如图,AD是RtABC的角平分线,12AB=,8AC=,则ABD△的面积与ACD△的面积之比是__
____.【答案】3:2【分析】过点D作DEAB⊥于点E,由角平分线的性质得到DE=CD,再根据三角形面积公式解答即可.【详解】解:过点D作DEAB⊥于点E,AD是RtABC的角平分线,,CDACDEAB⊥⊥DECD=112321822ABDACDABDESABSA
CACCD====△△故答案为:3:2.【点睛】本题考查角平分线的性质、三角形面积公式等知识,是基础考点,掌握相关知识是解题关键.7.(2022·江西·景德镇一中七年级期末)如图,在RtABC△中,90,20,ACBCABACB==的平分线与外角ABD的平分线交于点E,连接
AE,则AEB=____________.【答案】45°##45度【分析】过点E作EH⊥CB,交CB延长线于H,作EF⊥AC,交CA延长线于F,作EG⊥AB于G.根据角平分线的性质定理,可得EF=EG,再由角平
分线的性质定理逆定理可得AE平分∠FAB.从而得到∠EAB=80°,再求出∠ABE=55°,即可求解.【详解】解:如图,过点E作EH⊥CB,交CB延长线于H,作EF⊥AC,交CA延长线于F,作EG⊥AB于G.∵CE平分∠ACB,∴EH=EF,∴BE平分∠ABD,∴EH=EG,∴EF=EG,∴
AE平分∠FAB.∵∠FAB=180°-∠BAC=160°,∴∠EAB=80°,∵∠ABD=∠ACB+∠BAC=110°,∴∠ABE=55°,∴∠AEB=180°-∠EAB-∠ABE=45°.故答案为:45°【点睛】本题主要考查了角平分线的性质定理及其逆定理,熟练掌握角平分线的性质
定理及其逆定理是解题的关键.8.(2022·河南省实验中学八年级期末)已知:如图1,在RtABC中,90ACB=,60B=,AD,CE是角平分线,AD与CE相交于点F,FMAB⊥,FNBC⊥,垂足分别为M,N.【思考说理】(1)求证:FEFD
=.【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“90ACB=”去掉,其他条件不变,观察发现(1)中结论(即FEFD=)仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.【答案】(1)证明见详解;(2)正确,证明见详解;【分
析】(1)由角平分线的性质、三角形内角和定理证()RtFDNRtFEMAAS即可求解;(2)在AB上截取CP=CD,分别证()CDFCPFSAS、()AFEAFPASA即可求证;【详解】证明:(1)∵AD平分∠BAC,CE平分∠ACB,∴点F是A
BC的内心,∵FMAB⊥,FNBC⊥,∴FMFN=,∵90ACB=,60ABC=,∴30CAB=∴15CAD=∴75ADC=∵45ACE=∴75CEB=∴ADCCEB=∴()RtF
DNRtFEMAAS∴FEFD=(2)如图,在AB上截取CP=CD,在CDF和CPF中,∵CDCPDCFPCFCFCF===∴()CDFCPFSAS∴FDFP=,∠CFD=∠CFP,∵AD平分∠BAC,CE平分∠ACB,∴∠CAD=∠BAD,∠ACE=∠
BCE,∵∠B=60°,∴∠ACB+∠BAC=120°,∴∠CAD+∠ACE=60°,∴∠AFC=120°,∵∠CFD=∠AFE=180°-∠AFC=60°,∵∠CFD=∠CFP,∴∠AFP=∠CFP=∠CFD=∠AFE=
60°,在AFE和AFP中,∵AFEAFPAFAFPAFEAF===∴()AFEAFPASA∴FP=EF∴FD=EF.【点睛】本题主要考查三角形的全等证明及性质,角平分线的性质,掌握相关知识并正确作出辅助
线构造全等三角形是解题的关键.9.(2022·安徽合肥·八年级期末)图,在平面直角坐标系中,已知DA⊥x轴于点A,CB⊥x轴于点B,∠COD=90°,CO平分∠BCD,CD交y轴于点E.(1)求证:DO平分∠ADC.(2)若点A的
坐标是()3,0−,求点B的坐标.【答案】(1)见解析(2)(3,0)【分析】(1)由//ADBC可得180ADCBCD+=,由90COD=可得90ODCOCD+=,再结合CO平分BCD
,即可证明DO平分ADC.(2)作OFCD⊥于F,利用角平分线的性质可得OBOFOA==,由此可得B的坐标.(1)证明:DAx⊥轴,CBx⊥轴,//DACB,180ADCBCD+=,CO平分BCD,2BCDOCD=,218
0ADCOCD+=,90COD=,90ODCOCD+=,18022(90)2ADCOCDOCDODC=−=−=,DO平分ADC.(2):作OFCD⊥于F,(3,0)A−,3OA=.DO平分ADC
,OADA⊥,OFDC⊥,3OFOA==.CO平分BCD,OBBC⊥,OFCD⊥,3OBOF==,(3,0)B.【点睛】本题考查了平行线的性质,角平分线的性质定理,熟知角平分线上的点到角两边的距离相
等是解决本题的关键.10.(2021·江苏徐州·八年级期中)在“延时课堂”数学实践活动中,同学们了解到,工人师傅常用角尺作一个已知角的角平分线.作法如下:如图①,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺0刻度的顶点P的射线O
P就是∠AOB的角平分线.(1)联系三角形全等的条件,通过证明△OMP≌△ONP,可知∠AOP=∠BOP,即OP平分∠AOB.则这两个三角形全等的依据是;(2)在活动的过程,同学们发现用两个全等的三角形纸片也可以作一个已知
角的角平分线.如图②所示,△CDE≌△STR,将全等三角形的一组对应边DE、TR分别放在∠AOB的两边OA、OB上,同时使这组对应边所对的顶点C、S分别落在OB、OA上,此时CE和SR的交点设为点Q,则射线OQ即为∠AOB的角平分线.你
认为他们的作法正确吗?并说明理由.【答案】(1)SSS;(2)正确,理由见解析.【分析】(1)根据已知条件证得△MOP≌△NOP,并由此可得出判定依据;(2)依据全等三角形的性质以及角平分线的定义,即可得到交点Q在
∠AOB的平分线上.【详解】解:(1)∵OM=ON,PM=PN,OP=OP,∴△MOP≌△NOP(SSS).故答案为:SSS.(2)正确,理由是:∵△CDE≌△STR,∴∠OEC=∠ORS,CE=SR,又∵∠
COE=∠SOR,∴△COE≌△SOR(AAS),∴OE=OR,OC=OS,∴SE=CR,又∵∠SQE=∠CQR,∴△SQE≌△CQR(AAS),∴EQ=RQ,又∵OQ=OQ,∴△EOQ≌△ROQ(SSS),∴∠AOQ=∠BOQ,即OQ平分∠AOB.【点睛】本题主要考查了全等三角形的判定与性质
以及角平分线的定义的运用,解决问题的关键是利用全等三角形的对应边相等以及对应角相等.11.(2022·黑龙江牡丹江·八年级期末)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.求证:(1)AD平分∠BA
C;(2)AC=AB+2BE.【答案】(1)见解析(2)见解析【分析】(1)先根据HL证明Rt△BDE≌Rt△CDF,则可得DE=DF,根据角平分线的判定方法即可得证;(2)先根据AAS证明△AED≌△AFD,
则可得AE=AF,又由于BE=FC,则结论得证.(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,在Rt△BDE与Rt△CDE中BDCDBECF==∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD平分∠BAC;(2)证明:由(1)可知A
D平分∠BAC,∴∠EAD=∠CAD,∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFA=90°又∵AD=AD,∴△AED≌△AFD(AAS),∴AE=AF,∵CF=BE,∴AC=AF+CF=AE+BE=AB+BE+BE=AB+2BE.【
点睛】本题主要考查角平分线的判定和性质,全等三角形的判定和性质.熟练掌握以上知识是解题的关键.题组C培优拔尖练1.(2022·全国·八年级课时练习)如图,从ABC内一点O出发,把ABC剪成三个三角形(如图1),边,,ABB
CAC放在同一直线上,点O都落在直线MN上(如图2),直线//MNAC,则点O是ABC的()A.三条角平分线的交点B.三条高的交点C.三条中线的交点D.三边中垂线的交点【答案】A【分析】根据平行线的性质可得点O到三边的距离相等,点O是三角形三条角平分线的交
点即可.【详解】解:∵直线//MNAC,根据平行线性质知点O到BC距离,点O到AC距离,点O到BA距离相等,∴点O到三边的距离相等∴点O是三角形三条角平分线的交点,故选择A.【点睛】本题考查角平分线的性质,掌握角平分线的性质是解题关键.2.(2022·湖南·长沙市开福区
青竹湖湘一外国语学校七年级阶段练习)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC-AB=2BE中,正确的是()A.①②③B.①②③④C.
①②④D.②③④【答案】C【分析】利用“HL”证明Rt△BDE和Rt△CDF全等,根据全等三角形对应边相等可得DE=DF;根据到角的两边距离相等的点在角的平分线上判断出AD平分∠BAC;利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相
等可得AE=AF,即得出AB+BE=AC-FC,从而即可得到AC-AB=2BE;由垂线段最短可得AE<AD.【详解】解:在Rt△BDE和Rt△CDF中BDCDBECF==,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,故①正确;又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC,故
②正确;在Rt△ADE和Rt△ADF中ADADDEDF==,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF∴AB+BE=AC-FC,∴AC-AB=BE+FC=2BE,即AC-AB=2BE,故④正确;由垂线段最短可得AE<AD,故③错误,综上所述,正确
的是①②④.故选C.【点睛】本题主要考查了直角三角形全等的判定与角平分线的证明,熟练掌握相关概念是解题关键.3.(2022·山东济南·七年级期末)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,B
E=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC;⑤若AF=2,则DE=4.其中正确的有()个A.①②④B.①②④⑤C.①②⑤D.①②③⑤【答案】B【分析】易证△ABD≌△EBC,
可得∠BCE=∠BDA,AD=EC可得①②正确;再根据角平分线的性质可求得∠DAE=∠DCE,即AD=AE=EC,可得③错误、④正确,过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF(HL),可得BG=BF,再证明Rt△CEG≌Rt△AEF(HL),可得AF=CG=2,从而可得答案.【详解
】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,BDBCABDCBDBEBAì=ïï??íï=ïî,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC,∠BAE=∠BEA,∵△ABD≌△EB
C,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∠BCD=∠BDC,∠BAE=∠BEA,,CBEABE??∠BCD=∠BEA,∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∴∠DCE=∠DAE,∴△A
CE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④由③知AD=AE=EC,∴④正
确;过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BEBEEFEG==,∴Rt△BEG≌Rt△BEF(HL)
,∴BG=BF,∵在Rt△CEG和Rt△AFE中,EFEGAECE==,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG=2,∴DEBEBDBABC=-=-()BFAFBGCG=+--224BFBF=+-+=,故⑤正确.综上所述,正确的结论是①②④⑤.故选:B.【点睛
】本题考查了全等三角形的判定定理,角平分线的性质定理的应用,等腰三角形的判定与性质,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.4.(2022·黑龙江牡丹江·八年级期末)如图所示,点D在∠BAC的角平
线上,DE⊥AB于点E,DF⊥AC于点F,连接EF,BC⊥AD于点D,则下列结论中①DE=DF;②AE=AF;③∠ABD=∠ACD;④∠EDB=∠FDC,其中正确的序号是______________.【答案】①②③④【分
析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,全等三角形对应角相等可得∠ADE=∠ADF,根据垂直的定义可得∠ADB=∠ADC=90°,然后求出∠ED
B=∠FDC,再根据等角的余角相等可得∠ABD=∠ACD.【详解】解∵点D在∠BAC的角平线上,DE⊥AB,DF⊥AC,DE=DF,故①正确,在Rt△ADE和Rt△ADF中,ADADDEDF==,Rt△ADERt△ADF(HL),
AE=AF,∠ADE=∠ADF,故②正确,BC⊥AD,∠ADB=∠ADC=90,ADB-∠ADE=∠ADC-∠ADF,∠EDB=∠FDC,故④正确;∠ABD+∠EDB=90°,∠ACD+∠FDC=90°,∴∠ABD=∠ACD,
故③正确,故答案为:①②③④【点睛】此题考查了全等三角形的性质与判定、角平分线的性质,解题时注意结合图形分析已知条件与问题之间的位置关系,把条件与问题的联系作为主要的思考方向.5.(2022·全国·八年级课时练习)如图,在A
BC中,ABC和ACB的平分线相交于点O,过O点作EFBC∥交AB于点E,交AC于点F,过点O作ODAC⊥于D,下列四个结论:①EFBECF=+;②1902BOCA=−;③点O到ABC各边的距离相等;④设ODm=,AEAFn+=,则Δ12AEFSmn=.其
中正确的结论有________(填写序号).【答案】①③④【分析】由角平分线的性质,平行的性质,三角形的性质等对结论进行判定即可.【详解】解:在ABC中,ABC和ACB的平分线相交于点O,12OBCABC=,12OCBACB=,180AABCACB++=,
1902OBCOCBA+=−,1180()902BOCOBCOCBA=−+=+;故②错误;在ABC中,ABC和ACB的平分线相交于点O,OBCOBE=,OCBOCF=,//EFBC,OBCEOB=,OCBFOC=,EOBOBE=,
FOCOCF=,BEOE=,CFOF=,EFOEOFBECF=+=+,故①正确;过点O作OMAB⊥于M,作ONBC⊥于N,连接OA,在ABC中,ABC和ACB的平分线相交于点O,ONODOMm===,1111()2222AE
FAOEAOFSSSAEOMAFODODAEAFmn=+=+=+=;故④正确;在ABC中,ABC和ACB的平分线相交于点O,点O到ABC各边的距离相等,故③正确.故答案为:①③④.【点睛】本题考查了三角形内的有关角平分线的综合问题,一般地,从一个角的顶点出发,把这个角分成两个相
等的角的射线,叫做这个角的平分线,角的平分线上的点到角的两边的距离相等.也就是说,一个点只要在角的平分线上,那么这个点到该角的两边的距离相等.6.(2022·全国·八年级专题练习)如图,ABD△和BCE都是等边三角形,连接AE与CD,延
长AE交CD于点H.(1)证明:AEDC=;(2)求AHD的度数;(3)连接HB,求证:HB平分AHC.【答案】(1)见解析(2)60°(3)见解析【分析】(1)由△ABD和△BCE都是等边三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°−∠DBE,
即可根据全等三角形的判定定理“SAS”证明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因为∠BAD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于点F,BG⊥HC交
HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,即可证明△BAF≌△BDG,则BF=BG,根据“到角的两边距离相等的点在角的平分线上”即可证明HB平分∠AHC.(1)证明:如图1,∵△ABD和△BCE都是等边三角形
,∴BA=BD,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=60°−∠DBE,在△ABE和△DBC中,BABDABEDBCBEBC===,∴△ABE≌△DBC(SAS),∴AE=DC.(2)解:如图1
,由(1)得△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BAD=∠BDA=60°,∴∠HAD+∠HAD=∠HAD+∠BDC+∠BDA=∠HAD+∠BAE+∠BDA=∠BAD+∠BDA=120°,∴∠AHD=180°−(∠HAD+∠HDA)
=60°.(3)证明:如图2,作BF⊥HA于点F,BG⊥HC交HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,由△ABE≌△DBC得∠BAF=∠BDG,在△BAF和△BDG中,BAFBDGAFBGBABD===,∴△BAF≌△BDG(AAS),∴B
F=BG,∴点B在∠AHC的平分线上,∴HB平分∠AHC.【点睛】此题考查等边三角形的性质、全等三角形的判定与性质、到角的两边距离相等的点在角的平分线上等知识,证明三角形全等是解题的关键.7.(2022·湖北武汉·八年级期末)(1)
模型:如图1,在ABC中,AD平分BAC,DEAB⊥,DFAC⊥,求证:::ADBADCSSABAC=△△.(2)模型应用:如图2,AD平分EAC交BC的延长线于点D,求证:::ABACBDCD=.(3)类比应用:如图3,AB平分DAE,A
EAD=,180DE+=,求证:::BECDABAC=.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,12ADBSABDE=,12ADCSACDF=,即
可得出ADBS:ADCS=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出BDDEABAE=,BDCDABAD=,即可求解;(3)延长BE至M,使EM=DC,连接AM,根
据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即ABAMACBEEMDC==,即可得出答案;【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC,∴DE=DF,∵12ADBSABDE=,12ADCSACDF=,∴ADBS:ADCS=AB:AC;(2)如图,在AB上
取点E,使得AE=AC,连接DE又∵AD平分∠CAE,∴∠CAD=∠DAE,在△ACD和△AED中,ACAECADDAEADAD===,∴△ACD≌△AED(SAS),∴CD=DE且∠ADC=∠ADE,∴BDDEABAE=,∴BDCD
ABAD=,∴AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM,∵∠D+∠AEB=180°,又∵∠AEB+∠AEM=180°,∴∠D=∠AEM,在△ADC与△AEM中,ADAEDAEMDCEM===
,∴△ADC≌△AEM(SAS),∴∠DAC=∠EAM=∠BAE,AC=AM,∴AE为∠BAM的角平分线,故ABAMACBEEMDC==,∴BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与性
质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;8.(2021·广东惠州·八年级期中)如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:OA⊥OC;(3)直接写出AB,CD与AC的关系.【答案
】(1)见解析;(2)见解析;(3)AB+CD=AC【分析】(1)过点O作OE⊥AC于E,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;(2)利用“HL
”证明△ABO和△AEO全等,根据全等三角形对应角相等可得∠AOB=∠AOE,同理求出∠COD=∠COE,然后求出∠AOC=90°,再根据垂直的定义即可证明;(3)根据全等三角形对应边相等可得AB=AE,CD=CE,然后证明即
可.【详解】(1)证明:过点O作OE⊥AC于E,∵∠ABD=90°,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,又∵∠D=90°,OE⊥AC,∴OC平分∠ACD.(2)证明:在Rt△ABO和Rt△AEO中,
AOAOOBOE==,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=12×180°=90°,∴OA⊥OC.(3)结论:A
B+CD=AC.理由:∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.故答案为:AB+CD=AC.【点睛】本题考查角平分线性质及判定以及全等三角形的判定与性质,熟记角平分线上的点到
角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,并作辅助线构造出全等三角形是解题的关键.9.(2022·吉林·长春市赫行实验学校八年级阶段练习)教材呈现:如图是华师版八年级上册数学教材第96页的部分内
容.3.角平分线回忆:我们已经知道角是轴对称图形,角平分线所在的直线是角的对称轴.如图,OC是AOB的角平分线,P所示OC上的任意一点,作PDOA⊥,PEOB⊥,垂足分别为点D和点E,将AOB沿OC对折,我们发现PD
与PE完全重合,由此即有:角平分线的性质定理:角平分线上的点到角两边的距离相等.已知:如图,OC是AOB的平分线,点P是OC上的任意一点,PDOA⊥,PEOB⊥,垂足分别为点D和点E.求证:PDPE=,请写出定理的证明过程.分析:图中有两个直角三角形PDO和PEO,只要证明这两个三角形全
等,即可证明PDPE=.请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:如图②,在四边形ABCD中,BC=,点E在边BC上,AE平分BAD,DE平分ADC.(1)求证:
BECE=.(2)若四边形ABCD的周长为24,2BE=,面积为30,则ABE△的边AB的高的长为_________.【答案】分析:证明见解析;定理应用:(1)证明见解析;(2)3【分析】分析:证明PEOPDO△△≌即可得出结论;定理应用:(
1)过E点分别向AB、AD、CD作垂线,进而通过全等证明即可;(2)根据AB、BE、CD之间的关系,利用等面积法进行整体转换,结合(1)中的结论,即可求解.【详解】分析:已知:射线OC是∠AOB的角平分线,PE⊥OB于E,PD⊥OA于D
,求证:PE=PD,证明:∵OC是∠AOB的角平分线,∴∠AOP=∠BOP,∵PE⊥OB于EPD⊥OA于D,∴∠PEO=∠PDO=90,在△POD与△POE中,POEPODPEOPDOOPOP===∴△POD≌△POE(AAS),∴PD=PE;定理应用:(1)如
图,过E作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在△BEF与△CEH中BCBFECHEEFEH===∴△BEF≌△CEH(AAS),∴BE
=CE;(2)由(1)可知,EFEGEH==,24BCBE==,则24420ABADCD++=−=,12ABESABEF=△,12ADESADEG=△,12CEDSCDEH=△,()1302ABEADECEDABCDSSSABADSCDEF+++=+
==△△△,3EF=,即:ABE△的边AB的高为3.【点睛】本题考查了角平分线性质的证明与运用,及等面积法转换三角形面积,熟练掌握角平分线的性质证明过程及灵活运用是解题关键.