《四川中考真题数学》四川省遂宁市2018年中考数学真题试题(含答案)

PDF
  • 阅读 1 次
  • 下载 0 次
  • 页数 25 页
  • 大小 683.365 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《四川中考真题数学》四川省遂宁市2018年中考数学真题试题(含答案)
可在后台配置第一页与第二页中间广告代码
《四川中考真题数学》四川省遂宁市2018年中考数学真题试题(含答案)
可在后台配置第二页与第三页中间广告代码
《四川中考真题数学》四川省遂宁市2018年中考数学真题试题(含答案)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有1人购买 付费阅读2.40 元
/ 25
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《四川中考真题数学》四川省遂宁市2018年中考数学真题试题(含答案).pdf,共(25)页,683.365 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-99e13f458d22aea2b44eebeabc9f0d1e.html

以下为本文档部分文字说明:

四川省遂宁市2018年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题4分,共40分)1.(4.00分)﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.102.(4.00分)下列等式成立的是()A.x2+3x2=3x4B.0.0

0028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a23.(4.00分)二元一次方程组的解是()A.B.C.D.4.(4.00分)下列说法正确的是()A.有两条边和一个角对应相等的两个三角形全等

B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直平分D.六边形的内角和是540°5.(4.00分)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是()A.B.C.D

.6.(4.00分)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A.4πB.8πC.12πD.16π7.(4.00分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象如图所示,则当y1>y2时,自变量

x满足的条件是()A.1<x<3B.1≤x≤3C.x>1D.x<38.(4.00分)如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5B.6C.7D.89.(4.00分)已知二次函数y=ax2+bx+c(a≠0)的图象

如图所示,则以下结论同时成立的是()A.B.C.D.10.(4.00分)已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥A

G,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MBF=中正确的是()A.①②③B.②③④C.①③④D.①②④二、细心填一填(本大题共5小题,每小题4分,满分20分,请把答案填在答題卷相应题号的横线上)11.(4.00分)分解因式3a2﹣3b2=.12.(4.00

分)已知一组数据:12,10,8,15,6,8.则这组数据的中位数是.13.(4.00分)已知反比例函数y=(k≠0)的图象过点(﹣1,2),则当x>0时,y随x的增大而.14.(4.00分)A,B两市相距200

千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程.15.(4.00分)如

图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为.三、计算题

(本大题共15分,请认真读题)16.(7.00分)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.17.(8.00分)先化简,再求值•+.(其中x=1,y=2)四、解答题(本题共75分,请认真读题)18.(8.00分)如图,在▱ABCD中,

E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.19.(8.00分)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.20.(9.00分)如图所示,在平面直角坐

标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一

点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.21.(10.00分)如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.(1)求证:CM2=MN•MA;(2)若∠P=30°,PC=2,求

CM的长.22.(8.00分)请阅读以下材料:已知向量=(x1,x2),=(x2,y2)满足下列条件:①||=,=②⊗=||×||cosα(角α的取值范围是0°<α<90°);③⊗=x1x2+y1y2利用上述所给条件解答问题:如:已

知=(1,),=(﹣,3),求角α的大小;解:∵||===2,====2∴⊗=||×||cosα=2×2cosα=4cosα又∵⊗=x1x2+y1y2=l×(﹣)+×3=2∴4cosα=2∴cosα=,∴α=60°∴角α的值为60°.请仿照以上解答过程,完成下列问题:已知

=(1,0),=(1,﹣1),求角α的大小.23.(10.00分)学习习近平总书记关于生态文明建设重要井话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进

行了调查,并将调查结果分为了三类:A好,B:中,C:差.请根据图中信息,解答下列问题:(1)求全班学生总人数;(2)将上面的条形统计图与扇形统计图补充完整;(3)张老师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,若再从这4人中随加

抽取2人,请用画对状图或列表法求出全是B类学生的概率.24.(10.00分)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).25

.(12.00分)如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一

个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10

小题,每题4分,共40分)1.(4.00分)﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.10【解答】解:(﹣2)×(﹣5)=+2×5=10,故选:D.2.(4.00分)下列等式成立的是()A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣

a+b)(﹣a﹣b)=b2﹣a2【解答】解:A、x2+3x2=3x2,故此选项错误;B、0.00028=2.8×10﹣4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(﹣a+b)(﹣a﹣b)=a2﹣b2,故此选项

错误;故选:C.3.(4.00分)二元一次方程组的解是()A.B.C.D.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=0,则方程组的解为,故选:B.4.(4.00分)下列说法正确的是()A.有两条边和一个角对应相等的两个三角形全

等B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直平分D.六边形的内角和是540°【解答】解:A、有两条边和一个角对应相等的两个三角形全等,错误,必须是两边及其夹角分别对应相等的两个三角形全等;B、正方形既是轴对称图形又是中心对称图

形,正确;C、矩形的对角线相等且互相平分,故此选项错误;D、六边形的内角和是720°,故此选项错误.故选:B.5.(4.00分)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是()A.B.C.D.【解答】解:从正面看第

一层是三个小正方形,第二层中间一个小正方形,.故选:D.6.(4.00分)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A.4πB.8πC.12πD.16π【解答】解:该扇形的

面积==12π.故选:C.7.(4.00分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3B.1≤x≤3C.x>1

D.x<3【解答】解:当1<x<3时,y1>y2.故选:A.8.(4.00分)如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5B.6C.7D.8【解答】解:∵半径OC垂直于弦

AB,∴AD=DB=AB=,在Rt△AOD中,OA2=(OC﹣CD)2+AD2,即OA2=(OA﹣1)2+()2,解得,OA=4∴OD=OC﹣CD=3,∵AO=OE,AD=DB,∴BE=2OD=6,故选:B.9.(4.00分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,

则以下结论同时成立的是()A.B.C.D.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0

,∴a+b+c<0.故选:C.10.(4.00分)已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG

,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MBF=中正确的是()A.①②③B.②③④C.①③④D.①②④【解答】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG,∴EF=FG,∵DE=

BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=,∴BF=,AF==,故②正确,③错误

,∵BM∥AG,∴△FBM∽△FGA,∴=()2,∴S△FBM=,故④正确,故选:D.二、细心填一填(本大题共5小题,每小题4分,满分20分,请把答案填在答題卷相应题号的横线上)11.(4.00分)分解因式3a2﹣3b2=3(a+b)(a﹣b).【解答】解:3a2﹣3b2=

3(a2﹣b2)=3(a+b)(a﹣b).故答案是:3(a+b)(a﹣b).12.(4.00分)已知一组数据:12,10,8,15,6,8.则这组数据的中位数是9.【解答】解:将数据从小到大重新排列为:6、8

、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.13.(4.00分)已知反比例函数y=(k≠0)的图象过点(﹣1,2),则当x>0时,y随x的增大而增大.【解答】解:把(﹣1,2)代入解析式y=,

可得:k=﹣2,因为k=﹣2<0,所以当x>0时,y随x的增大而增大,故答案为:增大14.(4.00分)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且

甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.【解答】解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.15.(4.00分)如图,已知抛物线y=ax2﹣4x

+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为(,0).【解答】解:作点A关于x轴的对称点A′,连接A′B,则A′B与x轴的交点

即为所求,∵抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),∴点B(3,3),∴,解得,,∴y=x2﹣4x+6=(x﹣2)2+2,∴点A的坐标为(2,2),∴点A′的坐标为(2,﹣2),设过点A′(2,

﹣2)和点B(3,3)的直线解析式为y=mx+n,,得,∴直线A′B的函数解析式为y=5x﹣12,令y=0,则0=5x﹣12得x=,故答案为:(,0).三、计算题(本大题共15分,请认真读题)16.(7.00分)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.【解答】解

:原式=3+1+2×+2﹣=4++2﹣=6.17.(8.00分)先化简,再求值•+.(其中x=1,y=2)【解答】解:当x=1,y=2时,原式=•+=+==﹣3四、解答题(本题共75分,请认真读题)18.(8.00分)如图,在▱

ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形

,∵AC⊥EF,∴四边形AECF是菱形.19.(8.00分)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.【解答】解:∵该一元二次方程有两个实数根,∴△=(﹣2)

2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.20.(9.00分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二

、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【解答】解:(1

)∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A(﹣3,4),代入反比例解析式得:m=﹣12

,即y=﹣,把B坐标代入得:n=6,即B(6,﹣2),代入一次函数解析式得:,解得:,即y=﹣x+2;(2)当OE3=OE2=AO=5,即E2(0,﹣5),E3(0,5);当OA=AE1=5时,得到OE1=2AD=8,即E1(0,8);当AE4=OE4时,由A(﹣3

,4),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1.5,2),∴AO垂直平分线方程为y﹣2=(x+),令x=0,得到y=,即E4(0,),综上,当点E(0,8)或(0,5)或(0,﹣5)或(0,)时,△AOE是等腰三角形.21.(

10.00分)如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.(1)求证:CM2=MN•MA;(2)若∠P=3

0°,PC=2,求CM的长.【解答】解:(1)∵⊙O中,M点是半圆CD的中点,∴=,∴∠CAM=∠DCM,又∵∠CMA=∠NMC,∴△AMC∽△CMN,∴=,即CM2=MN•MA;(2)连接OA、DM,∵PA是⊙O的切线,∴∠PAO=90°,又∵∠P=30°,∴O

A=PO=(PC+CO),设⊙O的半径为r,∵PC=2,∴r=(2+r),解得:r=2,又∵CD是直径,∴∠CMD=90°,∵CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD

2,即2CM2=(2r)2=16,则CM2=8,∴CM=2.22.(8.00分)请阅读以下材料:已知向量=(x1,x2),=(x2,y2)满足下列条件:①||=,=②⊗=||×||cosα(角α的取值范围是0°<α<90°);③⊗=x1x2+y1y2利用上述所给条件解答问题:如:已知=

(1,),=(﹣,3),求角α的大小;解:∵||===2,====2∴⊗=||×||cosα=2×2cosα=4cosα又∵⊗=x1x2+y1y2=l×(﹣)+×3=2∴4cosα=2∴cosα=,∴α=60°∴

角α的值为60°.请仿照以上解答过程,完成下列问题:已知=(1,0),=(1,﹣1),求角α的大小.【解答】解:∵||===1,===,∴⊗=||×||cosα=cosα又∵⊗=x1x2+y1y2=l×1+0×(﹣1)=1∴cosα=1∴cosα=,∴α=45°

23.(10.00分)学习习近平总书记关于生态文明建设重要井话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类:A好,B:中,C:差.请根据图中信息,解答下列问题:(1)求全班

学生总人数;(2)将上面的条形统计图与扇形统计图补充完整;(3)张老师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,若再从这4人中随加抽取2人,请用画对状图或列表法求出全是B类学生的概率.【解答】解:(1)全班学生总人数为10÷

25%=40(人);(2)∵C类人数为40﹣(10+24)=6,∴C类所占百分比为×100%=15%,B类百分比为×100%=60%,补全图形如下:(3)列表如下:ABBCABABACABABBBCBBABBBCB

CACBCBC由表可知,共有12种等可能结果,其中全是B类的有2种情况,所以全是B类学生的概率为=.24.(10.00分)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了2

00米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100,∵

∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=BF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=

90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200米,在Rt△BDE中,sin

∠BDE=,∴BE=BD•sin∠BDE=200×=100,∴BC=BE+EC=100+100(米).25.(12.00分)如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线

的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.

【解答】解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标

为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所

示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,

∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣

m2+2m﹣3=0,解得:m1=2,m2=6,∴点P的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点P的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,

﹣﹣1).获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 132728
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?