【文档说明】2008年高考试题——数学理(辽宁卷).doc,共(12)页,1.159 MB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-88713716f970507840427dd963b0c144.html
以下为本文档部分文字说明:
2008年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A、B互斥,那么球的表面积公式
P(A+B)=P(A)+P(B)S=42R如果事件A、B相互独立,那么其中R表示球的半径P(A·B)=P(A)·P(B)球的体和只公式如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件A恰好发生k次的概率V=243R()(1)(0,1,
2,,)kknknnPkCPpkn−=−=其中R表示球的半径一、选择题1.已知集合30,31xMxNxxx+==−−„,则集合1xx…为()A.MNB.MNC.()RMNðD.()R
MNð答案:C解析:本小题主要考查集合的相关运算知识。依题31,3MxxNxx=−=−„,∴{|1}MNxx=,()RMN=ð1.xx…2.135(21)lim(21)nnnn→++++−+等于()A.14B.12C.1D.2答案:B解析:本小题主要考查对数列极限的求
解。依题22135(21)1limlim.(21)22nnnnnnnn→→++++−==++3.圆221xy+=与直线2ykx=+没有公共点的充要条件是()A.(2,2)k−B.(,2)(2,)k−−+
C.(3,3)k−D.(,3)(3,)k−−+答案:C解析:本小题主要考查直线和圆的位置关系。依题圆221xy+=与直线2ykx=+没有公共点2211dk=+(33).k−,4.复数11212ii+−+−的虚部是()A.15iB.15
C.15i−D.15−答案:B解析:本小题主要考查复数的相关运算及虚部概念。依题:1111.21255iii+=−+−+−∴虚部为1.55.已知,,OAB是平面上的三个点,直线AB上有一点C,满足2ACCB+=0,则OC等于()A.2OAOB−B.2OAOB−+C.2133OA
OB−D.1233OAOB−+答案:A解析:本小题主要考查平面向量的基本定理。依题22().OCOBBCOBACOBOCOA=+=+=+−∴2.OCOAOB=−6.设P为曲线2:23Cyxx=++上的点,且曲线C在点P处切线倾斜角的取值范围是[0,]4,
则点P横坐标的取值范围是()A.1[1,]2−−B.[1,0]−C.[0,1]D.1[,1]2答案:A解析:本小题主要考查利用导数的几何意义求切线斜率问题。依题设切点P的横坐标为0x,且0'22tanyx=+=(为点P处切线的倾斜角),又∵[0,]4,∴002
21x+,∴01[1,].2x−−7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.13B.12C.23D.34答案:C解析:本小题主要考查等可能
事件概率求解问题。依题要使取出的2张卡片上的数字之和为奇数,则取出的2张卡片上的数字必须一奇一偶,∴取出的2张卡片上的数字之和为奇数的概率11222342.63CCPC===8.将函数21xy=+的图象按向量a平移得到函数12xy+=的图象,则a等于()A.(1,1)−−B.(
1,1)−C.(1,1)D.(1,1)−答案:A解析:本小题主要考查函数图像的平移与向量的关系问题。依题由函数21xy=+的图象得到函数12xy+=的图象,需将函数21xy=+的图象向左平移1个单位,向下平移1个单位;故(11).=−−,a9.生产过程有4道工序,每道工序需要安排一人照看,
现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有()A.24种B.36种C.48种D.72种答案:B解析:本小题主要考查排列组合知识。依题若第一道工序由甲来完成,则第四道工序必由丙来完成,
故完成方案共有2412A=种;若第一道工序由乙来完成,则第四道工序必由甲、丙二人之一来完成,故完成方案共有12A2424A=种;∴则不同的安排方案共有21242436AAA+=种。10.已知点P是抛物线22
yx=上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()A.172B.3C.5D.92答案:A解析:本小题主要考查抛物线的定义解题。依题设P在抛物线准线的投影为'P,抛物线的焦点为F,则1(,0)2F,依抛物
线的定义知P到该抛物线准线的距离为|'|||PPPF=,则点P到点(0,2)A的距离与P到该抛物线准线的距离之和22117||||||()2.22dPFPAAF=+=+=11.在正方体1111ABCDABCD−中,,EF分别为棱11,AACC的中点,则在空间中与三条直线11,,ADEFCD都相
交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条答案:D解析:本小题主要考查立体几何中空间直线相交问题,考查学生的空间想象能力。在EF上任意取一点M,直线11AD与M确定一个平面,这个平面与CD有且仅有1个交点N,当M取不同的位置就确定不同的平面,从而与CD有不同的交点N
,而直线MN与这3条异面直线都有交点的.如右图:12.设()fx是连续的偶函数,且当0x时()fx是单调函数,则满足3()()4xfxfx+=+的所有x之和为()A.3−B.3C.8−D.8答案:C解析:本小题
主要考查函数的奇偶性性质的运用。依题当满足3()()4xfxfx+=+时,即34xxx+=+时,得2330xx+−=,此时123.xx+=−又()fx是连续的偶函数,∴()()fxfx−=,∴另一种情形是3()()4xfxfx+−=+,即34xxx+−
=+,得2530xx++=,∴345.xx+=−∴满足3()()4xfxfx+=+的所有x之和为3(5)8.−+−=−第Ⅰ卷(选择题共60分)二、填空题13.函数1,0,0xxxyex+=…的反函数是____________________.答案:11ln1
.xxyxx−=,,,≥解析:本小题主要考查求反函数基本知识。求解过程要注意依据函数的定义域进行分段求解以及反函数的定义域问题。14.在体积为43的球的表面上有,,ABC三点,1,2,,ABBCAC==两点的球面距离为33,则球心到平面ABC的距离为________
______.答案:32解析:本小题主要考查立体几何球面距离及点到面的距离。设球的半径为R,则34433VR==,∴3.R=设A、C两点对球心张角为,则333ACR===,∴3=,∴3AC=,∴AC为A
BC所在平面的小圆的直径,∴90ABC=,设ABC所在平面的小圆圆心为'O,则球心到平面ABC的距离为'dOO=2'22333().22RBO=−=−=15.已知231(1)()nxxxx+++的展开式中没有常数项,*,28nNn剟,则n=__
____.答案:5解析:本小题主要考查二项式定理中求特定项问题。依题31()nxx+对*,28nNn剟中,只有5n=时,其展开式既不出现常数项,也不会出现与x、2x乘积为常数的项。16.已知()sin()(0),()()363f
xxff=+=,且()fx在区间(,)63有最小值,无最大值,则=__________.答案:143解析:本小题主要针对考查三角函数图像对称性及周期性。依题()sin()(0),()()363fxxff=+=且()fx在区间(,)63
有最小值,无最大值,∴区间(,)63为()fx的一个半周期的子区间,且知()fx的图像关于6324x+==对称,∴32,432kkZ+=+,取0K=得14.3=三、解答题17.在ABC△中,内角,,ABC对
边的边长分别是,,abc.已知2,3cC==.⑴若ABC△的面积等于3,求,ab;⑵若sinsin()2sin2CBAA+−=,求ABC△的面积.说明:本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解析:(Ⅰ)由余
弦定理及已知条件得,224abab+−=,又因为ABC△的面积等于3,所以1sin32abC=,得4ab=.························4分联立方程组2244ababab+−==,
,解得2a=,2b=.··············································6分(Ⅱ)由题意得sin()sin()4sincosBABAAA++−=,即sincos2sincosBAAA=,···
······································································8分当cos0A=时,2A=,6B=,433a=,233b=,当cos0A时,得sin2sinBA
=,由正弦定理得2ba=,联立方程组2242ababba+−==,,解得233a=,433b=.所以ABC△的面积123sin23SabC==.·····················································12分18.
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量234频数205030⑴根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;⑵已知每吨该商品的销售利润为2千元,
表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.说明:本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.解析:(Ⅰ)周销售量为2吨,3吨和
4吨的频率分别为0.2,0.5和0.3.·························3分(Ⅱ)的可能值为8,10,12,14,16,且P(=8)=0.22=0.04,P(=10)=2×0.2×0.5=0.2,P(=12)=0.52+2
×0.2×0.3=0.37,P(=14)=2×0.5×0.3=0.3,P(=16)=0.32=0.09.的分布列为810121416P0.040.20.370.30.09························································
······················································9分E=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元)············
····························12分19.如图,在棱长为1的正方体ABCDABCD−中,(01)APBQbb==,截面PQEFAD∥,截面PQGHAD∥.⑴证明:平面PQEF和平面PQGH
互相垂直;⑵证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;⑶若DE与平面PQEF所成的角为45,求DE与平面PQGH所成角的正弦值.说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.解法一:(
Ⅰ)证明:在正方体中,ADAD⊥,ADAB⊥,又由已知可得PFAD∥,PHAD∥,PQAB∥,所以PHPF⊥,PHPQ⊥,所以PH⊥平面PQEF.所以平面PQEF和平面PQGH互相垂直.···························4分(Ⅱ)证明:由(Ⅰ)知22P
FAPPHPA==,,又截面PQEF和截面PQGH都是矩形,且PQ=1,所以截面PQEF和截面PQGH面积之和是(22)2APPAPQ+=,是定值.·····································
··········································8分(III)解:连结BC′交EQ于点M.因为PHAD∥,PQAB∥,所以平面ABCD和平面PQGH互相平行,因此DE与平面PQGH所成角与DE与
平面ABCDABCDPQEFGHABCDEFPQHABCDGNMABCD所成角相等.与(Ⅰ)同理可证EQ⊥平面PQGH,可知EM⊥平面ABCD,因此EM与DE的比值就是所求的正弦值.设AD交PF于点N,连结EN,由1FDb=−知222(
1)2(1)22DEbNDb=−+=+−,.因为AD⊥平面PQEF,又已知DE与平面PQEF成45角,所以2DEND=,即2222(1)(1)222bb+−=−+,解得12b=,可知E为BC中点.所以EM=24,又23(1)22DEb=−+=,故DE与平面PQ
CH所成角的正弦值为26EMDE=.·························································12分解法二:以D为原点,射线DA,DC,DD′分别为
x,y,z轴的正半轴建立如图的空间直角坐标系D-xyz由已知得1DFb=−,故(100)A,,,(101)A,,,(000)D,,,(001)D,,,(10)Pb,,,(11)Qb,,,(110)Eb−,,,(100)Fb−,,,(11)Gb
,,,(01)Hb,,.(Ⅰ)证明:在所建立的坐标系中,可得(010)(0)PQPFbb==−−,,,,,,(101)PHbb=−−,,,(101)(101)ADAD=−=−−,,,,,.因为00ADPQADPF==,,所以AD是平面PQEF的法向量.因为00ADPQADPH==
,,所以AD是平面PQGH的法向量.因为0ADAD=,所以ADAD⊥,所以平面PQEF和平面PQGH互相垂直.·······························································
···················4分(Ⅱ)证明:因为(010)EF=−,,,所以EFPQEFPQ=∥,,又PFPQ⊥,所以PQEFABCDEFPQHABCDyxzG为矩形,同理PQGH为矩形.在所建立的坐标系中可求得2(1)PHb=−,2PFb=,所以2PHPF+=,又1PQ=
,所以截面PQEF和截面PQGH面积之和为2,是定值.·······················································8分(Ⅲ)解:由已知得DE与AD成45角,又(111)(101)D
EbAD=−−=−,,,,,可得22222(1)2DEADbDEADb−==−+,即221(1)2bb−=−+,解得12b=.所以1112DE=−,,,又(101)AD=−−,,,所以DE与平面PQGH所成角的正弦值为1122|cos|362
2DEAD−+==,.···················································································12
分20.在直角坐标系xOy中,点P到两点(0,3),(0,3)−的距离之和为4,设点P的轨迹为C,直线1ykx=+与C交于,AB两点.⑴写出C的方程;⑵若OAOB⊥,求k的值;⑶若点A在第一象限,证明:
当0k时,恒有OAOB.说明:本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.解析:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以(03)(03
)−,,,为焦点,长半轴为2的椭圆.它的短半轴222(3)1b=−=,故曲线C的方程为2214yx+=.·······································································
························3分(Ⅱ)设1122()()AxyBxy,,,,其坐标满足22141.yxykx+==+,消去y并整理得22(4)230kxkx++−=,故1
212222344kxxxxkk+=−=−++,.·················································································5分若OAOB⊥,即12120xxyy+=.而2121212()1yykxxkxx=+
++,于是22121222233210444kkxxyykkk+=−−−+=+++,化简得2410k−+=,所以12k=.············································································
··········8分(Ⅲ)2222221122()OAOBxyxy−=+−+22221212()4(11)xxxx=−+−−+12123()()xxxx=−−+1226()4kxxk−=+.因为A在第一象限,故10x.
由12234xxk=−+知20x,从而120xx−.又0k,故220OAOB−,即在题设条件下,恒有OAOB.················································································
·····12分21.在数列,nnab中,112,4ab==,且1,,nnnaba+成等差数列,11,,nnnbab++成等比数列.⑴求234,,aaa及234,,bbb,由此猜测,nnab的通项公式,并证明你的结论;⑵证明:1122111512nna
babab++++++.说明:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.满分12分.解析:(Ⅰ)由条件得21112nnnnn
nbaaabb+++=+=,由此可得2233446912162025ababab======,,,,,.······················································2分猜测2(1)(1)nna
nnbn=+=+,.···························································································4分用数学归纳法证明:①当n=1时,由上可得结论成立
.②假设当n=k时,结论成立,即2(1)(1)kkakkbk=+=+,,那么当n=k+1时,22221122(1)(1)(1)(2)(2)kkkkkkaabakkkkkbkb+++=−=+−+=++==+,.所以当n=k+1时,结论也成立.由①②,可知2(1)(1
)nnannbn=++,对一切正整数都成立.············································7分(Ⅱ)11115612ab=+.n≥2时,由(Ⅰ)知(1)(21)2(1)nnabnnnn+=
+++.················································9分故112211111111622334(1)nnabababnn+++++++++++……111111116223341nn=+−+−++−+…111111
562216412n=+−+=+综上,原不等式成立.·····································································
·······································12分22.设函数ln()lnln(1)1xfxxxx=−+++.⑴求()fx的单调区间和极值;⑵是否存在实数a,使得关于x的不等式()fxa…的解集为(0,)+?
若存在,求a的取值范围;若不存在,试说明理由.说明:本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.满分14分.解析:(Ⅰ)221ln11ln()
(1)(1)1(1)xxfxxxxxxx=−−+=−++++.·····································2分故当(01)x,时,()0fx,(1)x+,∞时,()0fx.所以()fx在(01),单调递增
,在(1)+,∞单调递减.·····························································4分由此知()fx在(0)+,∞的极大值为(1)ln2f=,没有极小
值.··········································6分(Ⅱ)(ⅰ)当0a≤时,由于ln(1)ln(1)ln(1)ln(1)ln()011xxxxxxxxfxxx+++−++−==++,故关于x的不等式()fxa≥
的解集为(0)+,∞.································································10分(ⅱ)当0a时,由ln1()ln11xfxxx=+++知ln21(
2)ln1122nnnnf=+++,其中n为正整数,且有22211ln11log(1)222nnnnaene+−−−.······························
························12分又2n≥时,ln2ln2ln22ln2(1)121(11)12nnnnnnnn==−+++−.且2ln24ln2112annn+−.取整数
0n满足202log(1)nne−−,04ln21na+,且02n≥,则0000ln21(2)ln112222nnnnaafa=+++=+,即当0a时,关于x的不等式()fxa≥的解集不是(0)+,∞.综合(ⅰ)(ⅱ)知
,存在a,使得关于x的不等式()fxa≥的解集为(0)+,∞,且a的取值范围为(0−∞,.················································································
··································14分