《吉林中考真题数学》2020年吉林省中考数学试题及答案

PDF
  • 阅读 1 次
  • 下载 0 次
  • 页数 36 页
  • 大小 807.075 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《吉林中考真题数学》2020年吉林省中考数学试题及答案
可在后台配置第一页与第二页中间广告代码
《吉林中考真题数学》2020年吉林省中考数学试题及答案
可在后台配置第二页与第三页中间广告代码
《吉林中考真题数学》2020年吉林省中考数学试题及答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有1人购买 付费阅读2.40 元
/ 36
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《吉林中考真题数学》2020年吉林省中考数学试题及答案.pdf,共(36)页,807.075 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-86d0725cf9ccc9efe1d53b5c62ce924e.html

以下为本文档部分文字说明:

吉林省2020年初中毕业生学业水平考试数学试题一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.﹣6B.﹣16C.6D.162.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少

11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.611.0910B.71.10910C.81.10910D.80.1109103.如图,由5个完全相同的小正方体组合成一个

立体图形,它的左视图为()A.B.C.D.4.下列运算正确的是()A.236aaaB.325aaC.22(2)2aaD.32aaa5.将一副三角尺按如图所示的方式摆放,则的大小为()A.

85B.75C.65D.606.如图,四边形ABCD内接于O.若108B,则D的大小为()A.54B.62C.72D.82二、填空题(每小题3分,共24分)7.分解因式:2aab=____

___________.8.不等式317x的解集为_______.9.一元二次方程2310xx根的判别式的值为______.10.我国古代数学著作《算学启蒙》中有这样一个学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢

马?设快马x天可以追上慢马,根据题意,可列方程为______.11.如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CDl于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是_______.12.如图,////ABCDEF.若12ACCE,

5BD,则DF______.13.如图,在ABC中,D,E分别是边AB,AC的中点.若ADE的面积为12.则四边形DBCE的面积为_______.14.如图,在四边形ABCD中,ABCB,ADCD,我们把这种两组邻边分别相等的四边形叫做“筝形”,筝形ABCD的对角线AC,BD相

交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F,若30ABDACD,1AD,则EF的长为_______(结果保留).三、解答题(每小题5分,共20分)15.先化简,再求值:2(1)(1

)1aaa,其中7a.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡

片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.如图,在ABC中,

ABAC,点D在边AB上,且BDCA,过点D作//DEAC并截取DEAB,且点C,E在AB同侧,连接BE.求证:DEBABC.四、解答题(每小题7分,共28分)19.如图①、图②、图③都是33的正

方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q

为格点.(3)在图③中,画一个DEF,使DEF与ABC关于某条直线对称,且D,E,F为格点.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端

A的仰角EDA∠为36.求塔AB的高度(结果精确到1m).(参考数据:sin360.59,cos360.81,tan360.73)21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数kyx0x的图象上(点B的横坐标大于点

A的横坐标),点A的坐示为2,4,过点A作ADx轴于点D,过点B作BCx轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.2020年3月线上授课期间,小莹

、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查,将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,

要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式ABCDE人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式ABCDE

人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式ABCDE人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级

学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.某种机器工作

前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器工作时y关于x的函

数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中5ADAG,9AB.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行

四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②,则这两张平行四边形纸片未重叠部分图形的周长和为______.【操作二】四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③若4sin5BAD,则四边形

DCFG的面积为______.六、解答题(每小题10分,共20分)25.如图,ABC是等边三角形,4ABcm,动点P从点A出发,以2/cms的速度沿AB向点B匀速运动,过点P作PQAB,交折线ACCB于点

Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为xs02x,PQD△与ABC重叠部分图形的面积为y2cm.(1)AP的长为______cm(用含x的代数式表示).(2)当点D落在边BC上时,求x

的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.如图,在平面直角坐标系中,抛物线21322yxbx与x轴正半轴交于点A,且点A的坐标为3,0,过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQl于点Q;M是

直线l上的一点,其纵坐标为32m,以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.吉林

省20200年初中毕业生学业水平考试数学试题一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.﹣6B.﹣16C.6D.16【答案】C【解析】【分析】根据相反数的定义,即可解答.【详解】−6的相反数是:6,故选C.2.国务院总理李克强2020年5月

22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.611.0910B.71.10910C.81.10910D.80.11

0910【答案】B【解析】【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10na的形式,其中110a,n为整数,这种记数的方法叫做科学记数法则7110900001.10910故选:B.【点睛】本题考

查了科学记数法的定义,熟记定义是解题关键.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.【答案】A【解析】【分析】根据左视图的定义即可得.【详解】由左视图的定义得:这个立体图形的左视图由2行1列组成,其中,每行上只有1个小正方形,1列上有2个小正方形观

察四个选项可知,只有选项A符合故选:A.【点睛】本题考查了左视图的定义,熟记定义是解题关键.三视图的另两个概念是:主视图和俯视图,这是常考点,需掌握.4.下列运算正确的是()A.236aaaB.325aaC.22(2)2aaD.32aaa

【答案】D【解析】【分析】根据同底数幂的乘除法、幂的乘方、积的乘方逐项判断即可.【详解】A、23235aaaa,此项错误B、23236aaa,此项错误C、22(2)4aa,此项错误D、3232aaaa,此项正确故选:D.【点睛】本题考查了同底数幂的乘除法、幂

的乘方、积的乘方,熟记整式的运算法则是解题关键.5.将一副三角尺按如图所示的方式摆放,则的大小为()A.85B.75C.65D.60【答案】B【解析】【分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【详解】解:如图所示,由一副三角板的性质

可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故选:B.【点睛】本题考查的是三角形内

角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,四边形ABCD内接于O.若108B,则D的大小为()A.54B.62C.72D.82【答案】C【解析】【分析】根据圆内接四边形的对角互补,可求得D的度数.

【详解】因为,四边形ABCD内接于O,108B所以,D=180°-18010872B故选:C【点睛】考核知识点:圆的内接四边形.熟记圆的内接四边形性质是关键.二、填空题(每小题3分,共24分)7.分解因式:2aab=_______________.【答案】a(a﹣b

).【解析】【详解】解:2aab=a(a﹣b).故答案为a(a﹣b).【点睛】本题考查因式分解-提公因式法.8.不等式317x的解集为_______.【答案】2x.【解析】【分析】移项、合并同类项、系数化为1即可得出答案.【详解】解:317x

,移项:371x,合并同类项:36x,系数化成1:2x,所以不等式的解集为:2x;故答案为:2x.【点睛】本题主要考查了解一元一次不等式,关键是掌握解不等式的解题步骤.9.一元二次方程2310xx

根的判别式的值为______.【答案】13【解析】【分析】根据一元二次方程根的判别式△=b2-4ac即可求出值.【详解】解:∵a=1,b=3,c=-1,∴△=b2-4ac=9+4=13.所以一元二次方程x2+3x-1=0根的判别式的值为13.故答案为:13.【点睛

】本题考查了根的判别式,解决本题的关键是熟记根的判别式.10.我国古代数学著作《算学启蒙》中有这样一个学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上

慢马?设快马x天可以追上慢马,根据题意,可列方程为______.【答案】(240-150)x=150×12【解析】【分析】根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程.【详解】解:题中已设快马x天可以追上慢马,则根据

题意得:(240-150)x=150×12.故答案为:(240-150)x=150×12.【点睛】本题考查了一元一次方程的应用问题,找到等量关系,正确列出一元一次方程是解题的关键.11.如图,某单位要

在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CDl于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短.【解析】【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂

线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.12.如图,////ABCDEF.若12ACCE,5BD,则DF______.【答案】10【解析】【分析】根据平行线分线段成比例得到ACB

DCEDF,由条件即可算出DF的值.【详解】解:∵////ABCDEF,∴ACBDCEDF,又∵12ACCE,5BD,∴512DF,∴10DF,故答案为:10.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.13.如图,

在ABC中,D,E分别是边AB,AC的中点.若ADE的面积为12.则四边形DBCE的面积为_______.【答案】32【解析】【分析】先根据三角形中位线定理得出1//,2DEBCDEBC,再根据相似三角形的判定与性质得出2()ADEABCSDESB

C,从而可得ABC的面积,由此即可得出答案.【详解】点D,E分别是边AB,AC的中点1//,2DEBCDEBCADEABC21()4ADEABCSDESBC△△,即4ABCADESS△△又12ADES

1422ABCS则四边形DBCE的面积为13222ABCADESS故答案为:32.【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.14.如图,在四边形ABCD中,ABCB

,ADCD,我们把这种两组邻边分别相等的四边形叫做“筝形”,筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F,若30ABDACD,1AD,则EF的长为_______(结果保留).【答案】2【解析】【分析】根据题意,求出O

B的长;根据弧长的公式,代入数据,即可求解.【详解】由题意知:ABCB,ADCD,∴ABC和ADC是等腰三角形,AC⊥BD.∵30ABDACD,1AD∴OD=12,OA=32∴OB=32.∵∠ABD=30°,32r∴

∠EBF=60,EF=602360rp°´°13322pp=´=.故答案为2.【点睛】本题主要考查了等腰三角形的性质和弧长的公式,正确掌握等腰三角形的性质和弧长的公式是解题的关键.三、解答题(每小题5分,共20分)15.先化简,再求值:2(1)(

1)1aaa,其中7a.【答案】3a,37【解析】【分析】分别依据完全平方公式和单项式乘多项式法则计算,再合并同类项,然后将7a代入即可.【详解】解:原式=22211aaaa=3a

将7a代入原式=37.【点睛】本题考查整式的混合运算,二次根式的化简求值.熟练掌握完全平方公式和单项式乘多项式法则是解决此题的关键.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片

A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【答案】两张卡片中含有A的概率为5

9,详解见解析.【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.【详解】解:解法一

:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)=59.解法二:用列表法,根据题意,列表结果如下:结果为:(第一次抽取情况,第二次抽取情况)

由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)=59.【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏

.17.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【答案】12个.【解析】【分析】设乙每小时做x个零件,甲每小时做6x个零件,根据时间=总工作量÷工作效率,即

可得出关于x的分式方程,解之并检验后即可得出答案.【详解】解:设乙每小时做x个零件,则甲每小时做6x个零件,由题意得:90606xx,解得:12x,经检验:12x是分式方程的解,且符合题意,∴分式方程的解为:12x,答:乙每小

时做12个零件.【点睛】本题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.如图,在ABC中,ABAC,点D在边AB上,且BDCA,过点D作//DEAC并截取DEAB,且点C,E在AB同侧,连接BE.求证:DEBABC

.【答案】证明见详解【解析】【分析】根据SAS即可证得DEBABC.【详解】证明:∵//DEAC,∴∠A=∠EDB,在△ABC和△DEB中,BDCAEDBADEAB,∴DEBABC(SAS).【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的

关键.四、解答题(每小题7分,共28分)19.如图①、图②、图③都是33的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC

重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个DEF,使DEF与ABC关于某条直线对称,且D,E,F为格点.【答案】(1)图见解析;(2)图见解析;(3)图见解析.【解析】【分析】(1)先画出一条33的正方形网格的对称轴,根据对

称性即可在图①中,描出点AB的对称点MN,它们一定在格点上,再连接MN即可.(2)同(1)方法可解;(3)同(1)方法可解;【详解】解:(1)如图①,33的正方形网格的对称轴l,描出点AB关于直线l的对称点MN,连接MN即为所求;(

2)如图②,同理(1)可得,PQ即为所求;(3)如图③,同理(1)可得,DEF即为所求.【点睛】本题考查了作图轴对称变换,解决本题的关键是找到图形对称轴的位置.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角E

DA∠为36.求塔AB的高度(结果精确到1m).(参考数据:sin360.59,cos360.81,tan360.73)【答案】27m【解析】【分析】通过tanAEEDADE∠,可求出AE的长,从而得到AB的高度

.【详解】解:由题意可知35DECB,1.5BECD,36EDA∠,在直角△ADE中,tantan36AEEDADE∠,∵tan360.73,∴0.7335AE,即25.55AE,∴25.551.527.0527ABAEBE

,因此塔AB的高度为27m.【点睛】本题考查了解直角三角形的应用问题,熟练掌握三角函数是解题的关键.21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数kyx0x的图象上(点B的横坐标大于点A的横坐标),点A的坐示为2,4,过点A作ADx轴于点D,过点B作BCx轴于点C

,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【答案】(1)8;(2)10.【解析】【分析】(1)将点A的坐标为(2,4)代入(0)kyxx,可得结果;(2)利用反

比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.【详解】解:(1)将点A的坐标为(2,4)代入(0)kyxx,可得248kxy,k的值为8;(2)k的值为8,函数kyx的解析式为8yx,DQ为OC中点,2OD,4OC,点B的横坐标为

4,将4x代入8yx,可得2y,点B的坐标为(4,2),11242421022AODOABCABCDSSS四边形四边形.【点睛】本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.2020年3月线上授课期间,小莹、小静和小

新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查,将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选

择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式ABCDE人数463785表2:小静随机抽取10名学生居家减压方式

统计表(单位:人)减压方式ABCDE人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式ABCDE人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位

同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【答

案】(1)小新抽样调查所得的数据能较好地反映出该校九年级学生居家减压方式情况;小莹抽取60名男生居家减压方式统计,没有随机抽样,而且只抽取男生,样本没有代表性;小静随机抽取10名学生居家减压方式统计,样本容量太小,也没有代表性;(2)260人【解析】【分析】

(1)根据抽样调查的要求,所抽样本必须具有代表性,要保证所有个体都有相同的机会被抽到,样本的容量要适当;(2)根据样本的情况估计总体情况,利用室内体育活动方式进行减压的人数:600×2660人【详解】解:(1)小新抽样调查所得的数据能较好地反映出该校九年级学生居家减压方式情况.小

莹抽取60名男生居家减压方式统计,没有随机抽样,而且只抽取男生,样本没有代表性;小静随机抽取10名学生居家减压方式统计,样本容量太小,也没有代表性;(2)估计该校九年级600名学生中利用室内体育活动方式

进行减压的人数:600×2660=260(人)答:(1)小新抽样调查所得的数据能较好地反映出该校九年级学生居家减压方式情况.小莹抽取60名男生居家减压方式统计,没有随机抽样,而且只抽取男生,样本没有代表性;小静随机抽取10名学生居家减压方

式统计,样本容量太小,也没有代表性;(2)估计该校九年级600名学生中利用室内体育活动方式进行减压的人数是260人.【点睛】考核知识点:抽样调查.要注意抽样调查中样本的容量要适中,要具有代表性,会用样本估计总体情况.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,

然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器

工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【答案】(1)3,0.5;(2)1352yx,1060x;(3)5或40.【解析】【分析】(1)根据10min加油量为30L即可得;根据60min时剩

余油量为5L即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y关于x的函数解析式,再求出15y时,两个函数对应的x的值即可.【详解】(1)由函数图象得:机器每分钟加油量为303()10L机器工

作的过程中每分钟耗油量为3050.5()6010L故答案为:3,0.5;(2)由函数图象得:当10minx时,机器油箱加满,并开始工作;当60minx时,机器停止工作则自变量x的取值范围为1060x,且机器工作时的函数图象经过点(10

,30),(60,5)设机器工作时y关于x的函数解析式ykxb将点(10,30),(60,5)代入得:1030605kbkb解得1235kb则机器工作时y关于x的函数解析式1352yx;(3)设机器加油过程中的y关于x的

函数解析式yax将点(10,30)代入得:1030a解得3a则机器加油过程中的y关于x的函数解析式3yx油箱中油量为油箱容积的一半时,有以下两种情况:①在机器加油过程中当30152y时,315x,解得5x②在机器工作过程中当30152y时,135152x

,解得40x综上,油箱中油量为油箱容积的一半时x的值为5或40.【点睛】本题考查了函数图象、利用待定系数法求一次函数和正比例函数的解析式等知识点,从函数图象中正确获取信息是解题关键.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中5ADAG,9AB

.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②,则这两张平行四边形纸片未

重叠部分图形的周长和为______.【操作二】四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③若4sin5BAD,则四边形DCFG的面积为______.【答案】探究:证明见解析;操作一:56;操作二:72.【解析】【分析】探究:先根据平行四边形的

性质可得//,//ADGHAGDH,再根据平行四边形的判定可得四边形AGHD是平行四边形,然后根据菱形的判定即可得证;操作一:先根据菱形的性质得出,ADFEDE,再根据三角形全等的判定定理与性质可得AHFH,然后根据全等三

角形的性质、三角形的周长公式即可得;操作二:先根据平行四边形的性质、等腰三角形的判定可得ADG是等腰三角形,且AB平分DAG,再根据等腰三角形的三线合一可得ABDG,12DNNGDG,然后利用正弦三角函数可求出DN的长,从而可得DG的长,最后根据矩形

的判定可得四边形DCFG是矩形,据此利用矩形的面积公式即可得.【详解】探究:四边形ABCD和AEFG都是平行四边形//,//AEGFABDC,即//,//ADGHAGDH四边形AGHD是平行四边形又5ADAG平行四边形A

GHD是菱形;操作一:如图,设AE与DF相交于点H,AB与FG相交于点M四边形ABCD和AEFG是两个完全重合的平行四边形,ADFEDE,9DFAB在ADH和FEH△中,DEAHDFHEADFE()ADHFEHAAS

AHFH,ADH和FEH△的周长相等同理可得:ADHFEHFBMAGMADH、FEH△、FBM、AGM的周长均相等又5,9ADDFABADH的周长为14ADHLADDHAHADDHFHADDF

则这两张平行四边形纸片未重叠部分图形的周长和为441456ADHL故答案为:56;操作二:如图,设AB与DG相交于点N四边形ABCD和AEFG是两个完全重合的平行四边形5,9,,////ADAGCDFGA

BBADBAGCDABFGADG是等腰三角形,且AB平分DAGABDG,12DNNGDGCDDG在RtADN△中,4sin5DNNADAD,即455DN解得4DN28DGDN又//,CD

FGCDFG四边形DCFG是平行四边形CDDG,即90CDG平行四边形DCFG是矩形则四边形DCFG的面积为8972DGCD故答案为:72.【点睛】本题考查了平行四边形的判定与性质、三角形全等的判定与性质、菱形的判定、矩形的判定、正弦三角

函数等知识点,熟记并灵活运用各判定定理与性质是解题关键.六、解答题(每小题10分,共20分)25.如图,ABC是等边三角形,4ABcm,动点P从点A出发,以2/cms的速度沿AB向点B匀速运动,过点P作PQAB,交折线ACCB于点Q,以PQ

为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为xs02x,PQD△与ABC重叠部分图形的面积为y2cm.(1)AP的长为______cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)

求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)2x;(2)23;(3)当203x时,233yx;当213x时,2213183632yxx;当12x时,233(2)2yx.【解析】【分析】(1)根据“路程速度时间”即可得;(2)如图(

见解析),先根据等边三角形的性质可得60,ABDPQPQDP,再根据垂直的定义可得30AQPBPD,然后根据三角形全等的判定定理与性质可得AQBP,最后在RtAPQ中,利用直角三角形的性质列出等式求解即可得;(3)先

求出点Q与点C重合时x的值,再分203x、213x和12x三种情况,然后分别利用等边三角形的性质、正切三角函数、以及三角形的面积公式求解即可得.【详解】(1)由题意得:2()APxcm故答案为:2x;(2)如图,ABC和PQD△都是等边三角形60,ABDPQPQDP

PQAB,即90APQBPQ9030AQPA,30BPDBPQDPQ在APQ和BDP△中,30ABAQPBPDPQDP()APQBDPAASA

QBP4,2ABAPx42AQBPABAPx在RtAPQ中,30AQP12APAQ,即12(42)2xx解得23x;(3)ABC是等边三角形4ACBCAB当点Q与点C重合时,114222APAQ则2

2x,解得1x结合(2)的结论,分以下三种情况:①如图1,当203x时,重叠部分图形为PQD△由(2)可知,等边PQD△的边长为323PQAPx由等边三角形的性质得:PQ边上的高为332PQx则21233332yxxx②如图2,当213x时,重叠部分图形为四边形EFP

Q60,30BBPD18090BFPBBPD则在RtBFP△中,11(42)222BFBPxx,33(2)PFBFx233(2)3323DFPDPFxxx在RtDEF△中,tanEFDDF,即tan603EFDFDF则P

QDRtDEFEFPQySSS四边形21332xDFEF22333(3323)2xx2213183632xx③如图3,当12x时,重叠部分图形为MPQ同②可知,11(42)222BMBPxx,33(2)PMBMx

在RtMPQ中,tanMQMPQPM,即tan603MQPMPM则12MNPySPMMQ233(2)2x233(2)2x综上,当203x时,233yx;当213x时,2213183632yxx;当12x时,233(2)2yx.【

点睛】本题考查了等边三角形的性质、三角形全等的判定定理与性质、直角三角形的性质、正切三角函数等知识点,较难的是题(3),依据题意,正确分三种情况讨论是解题关键.26.如图,在平面直角坐标系中,抛物线21322yxbx与x轴正半轴交于点A,且点A的坐标为

3,0,过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQl于点Q;M是直线l上的一点,其纵坐标为32m,以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当

点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【答案】(1)1b;(2)120,4mm==;(3)71m

;(4)03m或4m.【解析】【分析】(1)将A点坐标代入函数解析式即可求得b的值;(2)分别表示出P、Q、M的坐标,根据Q、M的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;(3)分别表

示出PQ和MQ的长度,根据矩形PQMN是正方形时PQMQ,即可求得m的值,再根据顶点在正方形内部,排除不符合条件的m的值;(4)分1m£,13m,3m,3m四种情况讨论,结合图形分析即可.【详解】解:(1)将点3,0A代入21322

yxbx得21303322b,解得b=1,;(2)由(1)可得函数的解析式为21322yxx,∴213,22Pmmm,∵PQl于点Q,∴233,122mmQ,∵M是直线l上的一点,其纵坐标为3

2m,∴3(3,)2mM,若点Q与点M重合,则2133222mmm,解得120,4mm==;(3)由(2)可得|3|PQm=-,223131)2222|(()||2|MQmmmmm-+=+=-+--,当矩形PQMN

是正方形时,PQMQ即212|2||3|mmm-=-,即22123mmm-=-或22123mmm-=-,解22123mmm-=-得1271,71mm=+=-+,解22123mmm-=-得3233,33mm=+=-,又2131(1)2222yxxx,∴抛物线的顶点为(1,2)

,∵抛物线的顶点在该正方形内部,∴P点在抛物线对称轴左侧,即1m,且M点的纵坐标大于抛物线顶点的纵坐标,即322m-+>,解得12m,故m的值为71-+;(4)①如下图当1m£时,若抛物线在矩形PQ

MN内的部分所对应的函数值y随x的增大而减小,则M点的纵坐标应该小于P点纵坐标,且P点应该在x轴上侧,即2313222mmm-+<-++且213022mm,解2313222mmm-+<-++得04m

,解213022mm得13m,∴01m,②如下图当13m时,若抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则M点的纵坐标应该小于P点纵坐标,即2313222mmm-+<-++,解得04m,∴13m;③当3m时,P点和M点都在直

线x=3上不构成矩形,不符合题意;④如下图当3m时,若抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则M点的纵坐标应该大于P点纵坐标,即2313222mmm-+>-++,解得0m或4m,故4m,综上所述03m或4m.【点睛】本题考查二次函数综合,正方形的性质定理,求二

次函数解析式.能分别表示出M、P、Q的坐标并结合图形分析是解决此题的关键,注意分类讨论.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 132728
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?