【文档说明】《天津中考真题数学》2009年天津中考数学试题及答案.docx,共(12)页,207.165 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-7e21e2b0b0be15675d697283ebd8cf41.html
以下为本文档部分文字说明:
2009年天津市初中毕业生学业考试试卷第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2sin30°的值等于()A.1B.2C.3D.2
2.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个B.3个C.4个D.5个3.若xy,为实数,且220xy++−=,则2009xy的值为()A.1B.
1−C.2D.2−4.边长为a的正六边形的内切圆的半径为()A.2aB.aC.32aD.12a5.右上图是一根钢管的直观图,则它的三视图为()A.B.C.D.6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的
成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.5,8.5B.8.5,9C.8.5,8.75D.8.64,97.在ABC△和DEF△中,22ABDEACDFAD===,,,如果ABC△的周长是16,面积是12,那么DEF△的周长、面
积依次为()A.8,3B.8,6C.4,3D.4,68.在平面直角坐标系中,已知线段AB的两个端点分别是()()41AB−−,,1,1,将线段AB平移后得到线段AB,若点A的坐标为()22−,,则点B的坐标为()A.()43,B.()34,C.()12−−,D.()21−−,9.如图,
ABC△内接于O⊙,若28OAB=°,则C的大小为()EHINA第(9)题CABOA.28°B.56°C.60°D.62°10.在平面直角坐标系中,先将抛物线22yxx=+−关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换
后所得的新抛物线的解析式为()A.22yxx=−−+B.22yxx=−+−C.22yxx=−++D.22yxx=++2009年天津市初中毕业生学业考试试卷第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上.11.化简:188−
=.12.若分式22221xxxx−−++的值为0,则x的值等于.13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD的中点四边形是一个矩形,则四边形ABCD可以是.14.已知一次函数的图象过点()35,与()49−−,,则该函数的图象
与y轴交点的坐标为___________.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x本,付款金额为y元,请填写下表:x(本)271022y(元)1616.为了解某新品种黄瓜的生长情况,抽查了部
分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共
有_______个.18.如图,有一个边长为5的正方形纸片ABCD,要将其剪拼成边长分别为ab,的两个小正方形,使得2225ab+=.①ab,的值可以是________(写出一组即可);②请你设计一种具有一
般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:第(17)题5101520010121415黄瓜根数/株株数第(16)题第(18)题DCBA_______________________________________________
_____________________________________________________________________________三、解答题:本大题共8小题,共66分.解答应写
出文字说明、演算步骤或证明过程.19.(本小题6分)解不等式组5125431xxxx−+−+,.20.(本小题8分)已知图中的曲线是反比例函数5myx−=(m为常数)图象的一支.(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么?(Ⅱ)若该函数的图象与正比
例函数2yx=的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当OAB△的面积为4时,求点A的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)
采用树形图法(或列表法)列出两次摸球出现的所有可能结果;(Ⅱ)求摸出的两个球号码之和等于5的概率.22.(本小题8分)如图,已知AB为O⊙的直径,PAPC,是O⊙的切线,AC,为切点,30BAC=°(Ⅰ)求P的大小;xyO(Ⅱ)若
2AB=,求PA的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧AB,两个凉亭之间的距离.现测得30AC=m,70BC=m,120CAB=°,请计算AB,两
个凉亭之间的距离.24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两
竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情
况,得到矩形ABCD.结合以上分析完成填空:如图②,用含x的代数式表示:AB=____________________________cm;PCAOCBA20cm20cm30cmDCAB图②图①30cm
AD=____________________________cm;矩形ABCD的面积为_____________cm2;列出方程并完成本题解答.25.(本小题10分)已知一个直角三角形纸片OAB,其中9024AOBOAOB===°,,.
如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B,设OBx=,OCy=,试写出y关于x的函数解析式,并
确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B,且使BDOB∥,求此时点C的坐标.26.(本小题10分)已知函数212yxyxbxc==++,,,为方程120yy−=的两个根,点()1MT,在xyBOAxyBOAx
yBOA函数2y的图象上.(Ⅰ)若1132==,,求函数2y的解析式;(Ⅱ)在(Ⅰ)的条件下,若函数1y与2y的图象的两个交点为AB,,当ABM△的面积为112时,求t的值;(Ⅲ)若01,当01t时,试确定T
,,三者之间的大小关系,并说明理由.2009参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A2
.B3.B4.C5.D6.A7.A8.B9.D10.C二、填空题:本大题共8小题,每小题3分,共24分.11.212.213.正方形(对角线互相垂直的四边形均可)14.()01−,15.56,80,156.
816.60;1317.2118.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E可以是以BC为直径的半圆上的任意一点(点BC,除外).BECE,的长分别为两个小正方形的边长.三、解答题:本大题共8小题,共66分19.本小题满分6分解:5125431xxxx−+−+
,①②由①得2x,·······························································································2分由②得,52x−·······
·····················································································4分原不等式组的解集为2x··············
·····························································6分20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限.·········································
····1分因为这个反比例函数的图象分布在第一、第三象限,所以50m−,解得5m.····························································
················3分(Ⅱ)如图,由第一象限内的点A在正比例函数2yx=的图象上,设点A的坐标为()()00020xxx,,则点B的坐标为()00x,,0014242OABSxx==△,·,解得02x=(负值舍去).点A的坐标为()24,.·················
···································································6分DCBAE23123xyOBAy=2x又点A在反比例函数5myx−=的图象上,542m−=
,即58m−=.反比例函数的解析式为8yx=.········································································8分21.本小题满分8分.解(Ⅰ
)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种;法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种.···································4分(Ⅱ)设两个球
号码之和等于5为事件A.摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163PA==.········································································
···················8分22.本小题满分8分.解(Ⅰ)PA是O⊙的切线,AB为O⊙的直径,PAAB⊥.90BAP=°.30BAC=°,9060CAPBAC=−=°°.············································
····················2分又PA、PC切O⊙于点AC,.PAPC=.PAC△为等边三角形.60P=°.····································································
·····························5分(Ⅱ)如图,连接BC,则90ACB=°.在RtACB△中,230ABBAC==,°,ACAB=·cos2BAC=cos303°=.PAC△为等边三角形,PAAC=.123213
312第一个球第二个球PCBAO第二个球第一个球(1,3)(2,3)(1,2)(3,2)(3,1)(2,1)3211233PA=.···················································
···············································8分23.本小题满分8分解:如图,过C点作CD垂直于AB交BA的延长线于点D.···································1分在RtCDA△中,30180
18012060ACCADCAB==−=−=,°.················2分CDAC=·sin30CAD=·sin60153=°.ADAC=·cos30CAD=·cos60°=15.又在RtCDB△中,22270BCBDBCCD==,-,()227015365BD
=−=.········································································7分651550ABBDAD=−=−=,答:AB,两个凉亭之间的距离为50m.································
·······························8分24.本小题满分8分.解(Ⅰ)220630424260600xxxx−−−+,,;···········································
·········3分(Ⅱ)根据题意,得2124260600120303xx−+=−.····································5分整理,得2665500xx−+=.解方程,得125106xx==,(不合题意
,舍去).则552332xx==,.答:每个横、竖彩条的宽度分别为53cm,52cm.····················································8分25.本小题满分10分.解(Ⅰ)如图①,折叠后点B与点A重合
,则ACDBCD△≌△.设点C的坐标为()()00mm,.则4BCOBOCm=−=−.于是4ACBCm==−.在RtAOC△中,由勾股定理,得222ACOCOA=+,即()22242mm−=+,解得32m=.点C的坐标为302
,.···················································································4分xyBOADC图①xyBOB′DC图②xyBOB′DC图③CBAD(Ⅱ)如图②,折叠后点B落在OA边上的点为B,
则BCDBCD△≌△.由题设OBxOCy==,,则4BCBCOBOCy==−=−,在RtBOC△中,由勾股定理,得222BCOCOB=+.()2224yyx−=+,即2128yx=−+············
················································································6分由点B在边OA上,有02x≤≤,解析式2128yx=−+()02x≤≤为所求.当02x≤≤时,y随
x的增大而减小,y的取值范围为322y≤≤.·····································································7分(Ⅲ)如图③,折
叠后点B落在OA边上的点为B,且BDOB∥.则OCBCBD=.又CBDCBDOCBCBD==,,有CBBA∥.RtRtCOBBOA△∽△.有OBOCOAOB=,得2O
COB=.··································································9分在RtBOC△中,设()00OBxx=,则02OCx=.由(Ⅱ)的结论,得20
01228xx=−+,解得0008450845xxx=−=−+.,.点C的坐标为()08516−,.···································································10分26.本小题满分10分.解(Ⅰ)212120yx
yxbxcyy==++−=,,,()210xbxc+−+=.··············································································1分将1132==,分别代入()210xbxc+−+=,得()()2
2111110103322bcbc+−+=+−+=,,解得1166bc==,.函数2y的解析式为2y25166xx=−+.····························
··························3分(Ⅱ)由已知,得26AB=,设ABM△的高为h,312121212ABMSABhh===△·,即12144h=.根据题意,2tTh−=,由21166Ttt=++,得251166144tt−+−=
.当251166144tt−+=−时,解得12512tt==;当251166144tt−+=时,解得3452521212tt−+==,.t的值为55252121212−+,,.························
············································6分(Ⅲ)由已知,得222bcbcTtbtc=++=++=++,,.()()Tttb−=−++,()()Tttb−=−++,()()22bcbc−=++−+
+,化简得()()10b−++−=.01,得0−,10b++−=.有1010bb+=−+=−,.又01t,0tb++,0tb++,当0ta≤时,T
≤≤;当t≤时,T≤;当1t时,T.············································································10分获得更多资源请扫码加入享学资源网微
信公众号www.xiangxue100.com