【文档说明】内蒙古通辽市2019年中考数学真题试题(含解析).pdf,共(21)页,495.436 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-78ce04bc9ccf92b3c29364d03553a1ed.html
以下为本文档部分文字说明:
2019年内蒙古通辽市中考数学试卷一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.2.(3分)的平方根是()A.±4B.4C.±2D.+23.(3分)20
18年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为()A.73×106B.7.3×103C.7.3×107D.0.73×1084.(3分)下列几何
体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.5.(3分)如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣16.(3分)一个菱形的边长是方程
x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或807.(3分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π8.(3
分)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一
平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个9.(3分)关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是()A.B.C.D.10.(3分)在平面直角坐标系中,二次函数y=ax2+bx
+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个
D.4个二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.(3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是℃.12.(3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:日期6
月6日6月7日6月8日6月9日次品数量(个)102a若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.13.(3分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且A
E平分∠BAC,则AB的长为.14.(3分)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为.15.(3分)腰长为5,高为4的等腰三角形的底边长为.16.(3分)取5张看上去无差
别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为.17.(3分)如图,在边长为3的菱形ABCD中,∠A=60°,
M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(5分
)计算:﹣14﹣|﹣1|+(﹣1.414)0+2sin60°﹣(﹣)﹣119.(6分)先化简,再求值.÷+,请从不等式组的整数解中选择一个你喜欢的求值.20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层
,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4)21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张
纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜
.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生
中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计
表项目排球篮球踢毽跳绳其他人数(人)78146请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,
能否够用?请说明理由.23.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.24.(9分)当今,
越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于
18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.25.(9分)
如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.26.
(12分)已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线
上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写
出满足条件的点P的坐标.2019年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.【解答】解:﹣的相反数是:.故选:
D.2.【解答】解:=4,±=±2,故选:C.3.【解答】解:其中7300万用科学记数法表示为7.3×107.故选:C.4.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小
正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.5.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.6.【解答】解:(x﹣5
)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.7.【解答】解:连接OC,如图,∵△ABC为等边三角形,∴∠AOC=120°,S△AOB=S△AOC,∴图中阴影部分的面积=S扇形AOC=
=π.故选:C.8.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,正确,是真命题;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等或在同一直线上,错误,是假命题;③通常温度降
到0℃以下,纯净的水会结冰是必然事件,故错误,是假命题;④一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误,是假命题;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真
命题;真命题有2个,故选:B.9.【解答】解:二元一次方程组中第二个方程减去第一个方程得:x﹣y=﹣5k,∵关于x、y的二元一次方程组的解满足x<y,∴x﹣y<0,∴﹣5k<0,即:k>0,∴y=kx﹣k﹣1经过一三四象限,双曲线y=的两个分支位于一三象限,B选项符合,故选:B.10
.【解答】解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)
关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点
,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.【解答】解:根据7天的最高气温折线统计图,将这7天的最高
气温按大小排列为:24,25,26,27,28,28,29,故中位数为27℃,故答案为27.12.【解答】解:∵出现次品数量的唯一众数为1,∴a=1,∴,∴S2==,故答案为.13.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠B
AO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴64+AB2=4AB2,∴AB=故答案为:
.14.【解答】解:对角线所分得的三个三角形相似,根据相似的性质可知=,解得x=2.5,即阴影梯形的上底就是3﹣2.5=0.5(cm).再根据相似的性质可知=,解得:y=1,所以梯形的下底就是3﹣1=2(cm),所以阴影梯形的面积是(2+0.5)×3÷2
=3.75(cm2).故答案为:3.75cm2.15.【解答】解:①如图1当AB=AC=5,AD=4,则BD=CD=3,∴底边长为6;②如图2.当AB=AC=5,CD=4时,则AD=3,∴BD=2,∴BC==2,∴此时底边长为2;③如图3:当AB=AC
=5,CD=4时,则AD==3,∴BD=8,∴BC=4,∴此时底边长为4.故答案为:6或2或4.16.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2
时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.17.【解答】解:过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=
60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣1三、解答题(
本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.【解答】解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.19.【解答】解:÷+====,由不等式组,得﹣3<x≤2,∴当x=2时,原式=.20.【解
答】解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,在Rt△BFH中,tan∠BFH===,∴BH=30×=10≈10×1.7=17,∴FC=H
D=BD﹣BH≈30﹣17=13,∵≈4.3,所以在四层的上面,即第五层,答:此刻楼BD的影子会遮挡到楼AC的第5层.21.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为:
;(2)游戏不公平,理由如下:列表得:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴
对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.22.【解答】解:(1)从九年级最喜欢运动的项
目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,又知九年级最喜欢排球的人数为10人,∴九年级最喜欢运动的人数有10÷20%=50(人),∴本次调查抽取的
学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,那么八年级最喜欢跳绳的人数有15﹣5=10人,最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13
人,九年级最喜欢排球的人数占全年级的百分比==20%,补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)7814156(3)不够用,理由:1800×÷4=126,∵126
>124,∴不够用.故答案为:15.23.【解答】解:(1)直线AF是⊙O的切线,理由是:连接AC,∵AB为⊙O直径,∴∠ACB=90°,∴AC⊥BC,∵CF=CD,∴∠CAF=∠EAC,∵AC=CE,∴∠E=∠EAC,∵∠B=∠E,∴∠B=∠FAC,∵∠B+∠BAC=9
0°,∴∠FAC+∠BAC=90°,∴OA⊥AF,又∵点A在⊙O上,∴直线AF是⊙O的切线;(2)过点C作CM⊥AE,∵tan∠CAE=,∴=,∵AC=10,∴设CM=3x,则AM=4x,在Rt△ACM中,根据勾股定理,CM2+AM2=AC2,∴(3x)2+(4x)2=100,
解得x=2,∴AM=8,∵AC=CE,∴AE=2AE=2×8=16.24.【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+5
00)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(3
5+a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.25.【解答】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CB
F=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°﹣∠CPD﹣∠CPB
=180°﹣75°﹣60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.26.【解答】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐
标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=
DH(xC﹣xA)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q
(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣6=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行
四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2).获得更多资源请扫码加入享学
资源网微信公众号www.xiangxue100.com