【文档说明】《历年高考数学真题试卷》2015年北京高考理科数学试题及答案.docx,共(20)页,294.811 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-6aba46095ec7e12179f0e7b504ea8f0b.html
以下为本文档部分文字说明:
2015年北京市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2iB.1﹣2iC.﹣1+2iD.﹣1﹣2i2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为
()A.0B.1C.D.23.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()21世
纪教育网版权所有A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)(2015•北京)设{an}是等差数列,下列结论中正确的是()A.若a1+a2
>0,则a2+a3>0B.若a1+a3<0,则若a1+a2<0,C.若若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>07.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(
x+1)的解集是()21教育网A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,
如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米
/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y
=0,则a=.21·世纪*教育网11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.www-2-1-cnjy-com12.(5分)(2015•北京)在△ABC中,a=4,b=5,c
=6,则=.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.2-1-c-n-j-y14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最
小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sincos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)(2015•
北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:21*cnjy*comA组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A
,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不
要求证明)17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若
BE⊥平面AOC,求a的值.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)(2015•北
京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:
y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)(2015•北京)已知数列{an}满足:a1∈N*,a1≤36,且an+1=(n=1,2,…),记集合M={an|n∈N*}.
(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)(2015•北
京)复数i(2﹣i)=()A.1+2iB.1﹣2iC.﹣1+2iD.﹣1﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则解答.解答:解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.点评:本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣
1.2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.解答:解:
作出不等式组表示的平面区域,得到如图的三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考
查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)考
点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y,k的值,当k=3时满足条件k≥3,退出循环,输出(﹣4,0).解答:解:模拟执行程序框图,可得x=1,y=1,
k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.点评:本
题主要考查了循环结构的程序框图,正确写出每次循环得到的x,y,k的值是解题的关键,属于基础题.4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()2·1·c
·n·j·yA.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得
到m∥β,这样即可找出正确选项.解答:解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判
定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断
直观图为:A⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC
=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积
是2,故选:C.点评:本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)(2015•北京)设{an}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>
0B.若a1+a3<0,则若a1+a2<0,C.若若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:对选项分别进行判断,即可得出结论.解
答:解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a2<0,则2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{an}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确
;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,
则不等式f(x)≥log2(x+1)的解集是()21cnjy.comA.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:在已知坐标系内作出
y=log2(x+1)的图象,利用数形结合得到不等式的解集.解答:解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解
集是{x|﹣1<x≤1};故选C.点评:本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升
汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象
与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲
车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正
确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为40(用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所
求数值.解答:解:(2+x)5的展开式的通项公式为:Tr+1=25﹣rxr,所求x3的系数为:=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.21·cn·
jy·com考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a的值.解答:解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.点评:本题考查双曲线的方程和
性质,主要考查双曲线的渐近线方程的求法,属于基础题.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为1.【来源:21cnj*y.co*m】考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直
角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分
)(2015•北京)在△ABC中,a=4,b=5,c=6,则=1.考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴
sinC=,sinA=,∴==1.故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=﹣.www.21-cn-jy.com考点:平面向量的基本定理及其意义.专题:平面向量及应
用.分析:首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.解答:解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,
存在唯一的实数对(x,y)使,向量等式成立.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.考点:函数的零点;分段函数的应用.专题
:创新题型;函数的性质及应用.分析:①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.解答:解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,
f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h
(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函
数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点为x1=
a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已
知函数f(x)=sincos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;三角函数的最值.专题:计算题;三角函数的求值;三角函数的图像与性质.分
析:(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦喊话说的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.解答:解:(Ⅰ)f(x)=sincos﹣sin=sin
x﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.点评:
本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:【来源:21·世纪·教育·网】A组:10,11,12,13,14,15,16B组
;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙
的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件Ai为“甲是A组的第i个人”,事件Bi为“乙是B组的第i个人”,由题意
可知P(Ai)=P(Bi)=,i=1,2,••,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7
B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P(C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.解答:解:设事件Ai为“甲是A组的第i个人”,事件Bi为“乙是B组的第i个人”,由题意可知P(Ai)=P(Bi)=,i=1,2,••,7(Ⅰ)事件“甲的康复时
间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B
2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P
(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥
平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离;空间角
.分析:(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平
面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=B
Htan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,
1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解
得a=.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)
设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利
用新函数的单调性求参数k的取值范围.解答:解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0
<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(
x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.点评:本题主要考查切线方程的求
法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭
圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问
题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即yQ
2=xM•xN,+n2,根据m,m的关系整体求解.解答:解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,xM=∴M(,0
)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,yQ),∴tan∠OQM=tan∠ONQ,∴=,即yQ2=xM•xN,+n2=1yQ2==2,∴yQ=,故y轴上存在点Q,
使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)(2015•北京)已知数列{an}满足:a1∈N*,a1≤36,且
an+1=(n=1,2,…),记集合M={an|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法.分析:
(Ⅰ)a1=6,利用an+1=可求得集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设ak是3的倍数,由an+1=(n=1,2,…),可归纳证明对任意n≥k,an是3的倍数;(Ⅲ)分a1是3的倍数与a
1不是3的倍数讨论,即可求得集合M的元素个数的最大值.解答:解:(Ⅰ)若a1=6,由于an+1=(n=1,2,…),M={an|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设ak是3的倍数,由an+1=(n=1,2,…),可归纳证明对任
意n≥k,an是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为ak=2ak﹣1,或ak=2ak﹣1﹣36,所以2ak﹣1是3的倍数;于是ak﹣1是3的倍数;类似可得,ak﹣2,…,a1都是3的倍数;从而对任意n≥1,an是3的倍数;综
上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,an=(n=1,2,…),可归纳证明对任意n≥k,an<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,an是2的倍数.如果a1是3的倍数,由(Ⅱ)知,
对所有正整数n,an是3的倍数.因此当n≥3时,an∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,an不是3的倍数.因此当n≥3时,an∈{4,8,16,20
,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难
题.