【文档说明】2008年高考试题——数学文(全国卷2).doc,共(11)页,824.000 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-4bd4f6aca06e831a0f31354e0554fa66.html
以下为本文档部分文字说明:
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每
小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参
考公式:如果事件AB,互斥,那么球的表面积公式()()()PABPAPB+=+24πSR=如果事件AB,相互独立,那么其中R表示球的半径()()()PABPAPB=球的体积公式如果事件A在一次试验中发生的概率是p,那么34π3V
R=n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(012)kknkknPkCppkn−=−=,,,,一、选择题1.若sin0且tan0是,则是()A.第一象限角B.第二象限角C.
第三象限角D.第四象限角2.设集合{|32}Mmm=−Z,{|13}NnnMN=−=Z则,≤≤()A.01,B.101−,,C.012,,D.1012−,,,3.原点到直线052=−
+yx的距离为()A.1B.3C.2D.54.函数1()fxxx=−的图像关于()A.y轴对称B.直线xy−=对称C.坐标原点对称D.直线xy=对称5.若13(1)ln2lnlnxeaxbxcx−===,,,,,则()A.a<b<cB.c<a
<bC.b<a<cD.b<c<a6.设变量xy,满足约束条件:222yxxyx+−,,.≥≤≥,则yxz3−=的最小值为()A.2−B.4−C.6−D.8−7.设曲线2axy=在点(1,a)处的切线与直线062=−−yx平行,则=a()A.1B.12C.12−D.1−8.正四棱
锥的侧棱长为32,侧棱与底面所成的角为60,则该棱锥的体积为()A.3B.6C.9D.189.44)1()1(xx+−的展开式中x的系数是()A.4−B.3−C.3D.410.函数xxxfcossin)(−=的最大值为()A.1B.2C.3
D.211.设ABC△是等腰三角形,120ABC=,则以AB,为焦点且过点C的双曲线的离心率为()A.221+B.231+C.21+D.31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1B.2C.3D.
22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,ab,若向量+ab与向量(47)=−−,c共线,则=.14.从10名男同学,6名女同学中选
3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有种(用数字作答)15.已知F是抛物线24Cyx=:的焦点,AB,是C上的两个点,线段AB的中点为(22)M,,则ABF△的面积等于.16.平面内
的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出
文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC△中,5cos13A=−,3cos5B=.(Ⅰ)求sinC的值;(Ⅱ)设5BC=,求ABC△的面积.18.(本小题满分12分)等差数列na中,410a=且3610
aaa,,成等比数列,求数列na前20项的和20S.19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1
,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概
率.20.(本小题满分12分)如图,正四棱柱1111ABCDABCD−中,124AAAB==,点E在1CC上且ECEC31=.(Ⅰ)证明:1AC⊥平面BED;(Ⅱ)求二面角1ADEB−−的大小.21.(本小题满分12分)设aR
,函数233)(xaxxf−=.(Ⅰ)若2=x是函数)(xfy=的极值点,求a的值;(Ⅱ)若函数()()()[02]gxfxfxx=+,,,在0=x处取得最大值,求a的取值范围.22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)AB,,,是它的两个顶点,直线)0(=kkx
y与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若6EDDF=,求k的值;(Ⅱ)求四边形AEBF面积的最大值.ABCDEA1B1C1D12008年普通高等学校招生全国统一考试文科数学试题(必修+选修
Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后
继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.一、选择题1.C2.B3.D4.C
5.C6.D7.A8.B9.A10.B11.B12.C提示:1、,0sin在第三或四象限,0tan,在第一或三象限为第三象限角2、}1,0,1{},21|{−=−=ZxxxNM3、555==d4、)(xf为奇函数5、cabxxe−
−0ln1116、当=−=22yx时,83min−=−=yxZ7、axy2'=,当1=x时,122,2'===aaay8、如图,,60,32oSAOSA==则6,3,360sin====ABAOSASOo636312==V9、444)1()1()1(xx
x−=+−,x的系数为414−=−C10、)4sin(2cossin)(−=−=xxxxf)(xf最大值为211、设1||=AB,则3=AC,13||||2−=−=CBACa,1||2==ABC,21322+==ace12、1O与2O的公共弦为AB,球心为O,AB中点OO2CO
1CDBAS为C,则四边形COOO21为矩形,所以OCACACOAOCOO⊥===,1||,2|||,|||213||||||22=−=ACOAOC二、填空题13.214.42015.216.两组相对侧面分
别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.13、20)2(7)32(4)32,2(==+−+++=+ba;14、42036310316=−−CCC;15、设),(),(2211yxByxA,),(
444122122121222xxyyxyxy−=−==14121212=+=−−yyxxyyAB所在直线方程为22−=−xy即xy=,又4,04212====xxxyxy,22||||211||24||2||12==
==−=OFABSOFxxABABF;注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由5cos13A=−,得12sin13A=,由3cos5B=,得4sin5B=.···································
································································2分所以16sinsin()sincoscossin65CABABAB=+=+=.·····
············································5分(Ⅱ)由正弦定理得45sin13512sin313BCBACA===.···················································
······8分所以ABC△的面积1sin2SBCACC=1131652365=83=.·····························10分18.解:设数列na的公差为d,则3410aadd=−=−,642102a
add=+=+,1046106aadd=+=+.·········································································································3分由3610aaa
,,成等比数列得23106aaa=,即2(10)(106)(102)ddd−+=+,整理得210100dd−=,解得0d=或1d=.·······································································
···········································7分当0d=时,20420200Sa==.·····················································································
········9分当1d=时,14310317aad=−=−=,于是2012019202Sad=+207190330=+=.·····························································1
2分19.解:记12AA,分别表示甲击中9环,10环,12BB,分别表示乙击中8环,9环,A表示在一轮比赛中甲击中的环数多于乙击中的环数,B表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12CC,
分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122AABABAB=++,·················································································
·······2分112122()()PAPABABAB=++112122()()()PABPABPAB=++112122()()()()()()PAPBPAPBPAPB=++0.30.40.10.40.10.40.2=++=.··························
·······················································6分(Ⅱ)12BCC=+,·······································································
···········································8分22213()[()][1()]30.2(10.2)0.096PCCPAPA=−=−=,332()[()]0.20.008PCPA==
=,1212()()()()0.0960.0080.104PBPCCPCPC=+=+=+=.·····································12分20.解法一:依题设,2AB
=,1CE=.(Ⅰ)连结AC交BD于点F,则BDAC⊥.由三垂线定理知,1BDAC⊥.································································································3分在平面1ACA内
,连结EF交1AC于点G,由于122AAACFCCE==,故1RtRtAACFCE△∽△,1AACCFE=,CFE与1FCA互余.于是1ACEF⊥.1AC与平面BED内两条相交直线BDEF,都垂直,所以1AC⊥平面BED.··············
······························································································6分(Ⅱ)作GHDE⊥,垂足为H,连结1AH.由三垂线定理知1AHDE⊥,故1
AHG是二面角1ADEB−−的平面角.·········································································8分223EFCFCE=+=,23CECFCGEF==,2233EGCECG=−=.13EGEF=,1231
5EFFDGHDE==.又221126ACAAAC=+=,11563AGACCG=−=.11tan55AGAHGHG==.所以二面角1ADEB−−的大小为arctan55.·························
·········································12分解法二:以D为坐标原点,射线DA为x轴的正半轴,建立如图所示直角坐标系Dxyz−.依题设,1(220)(020)(021)(204)BCEA,,,,,,,,,,,
.ABCDEA1B1C1D1yxzABCDEA1B1C1D1FHG(021)(220)DEDB==,,,,,,11(224)(204)ACDA=−−=,,,,,.·······································3分(Ⅰ)因为
10ACDB=,10ACDE=,故1ACBD⊥,1ACDE⊥.又DBDED=,所以1AC⊥平面DBE.···················································
·························································6分(Ⅱ)设向量()xyz=,,n是平面1DAE的法向量,则DE⊥n,1DA⊥n.故20yz+=,240xz+=.令1y=,则2z=−,4x=,(412)=−,,n.·····
·································································9分1AC,n等于二面角1ADEB−−的平面角,11114cos42ACACAC==,nnn.所以二面角1ADEB−−的大小为14
arccos42.·································································12分21.解:(Ⅰ)2()363(2)fxaxxxax=−=−.因为2x=是函数()yfx=的极值点,所以(2)0f=
,即6(22)0a−=,因此1a=.经验证,当1a=时,2x=是函数()yfx=的极值点.······················································4分(Ⅱ)
由题设,3222()336(3)3(2)gxaxxaxxaxxxx=−+−=+−+.当()gx在区间[02],上的最大值为(0)g时,(0)(2)gg≥,即02024a−≥.故得65a≤.·········
·····················································································································9分反之,当65a≤时,对任意[02
]x,,26()(3)3(2)5gxxxxx+−+≤23(210)5xxx=+−3(25)(2)5xxx=+−0≤,而(0)0g=,故()gx在区间[02],上的最大值为(0)g.综上,a的取值范围为65−,.························
··································································12分22.(Ⅰ)解:依题设得椭圆的方程为2214xy+=,直线ABEF,
的方程分别为22xy+=,(0)ykxk=.··················································2分如图,设001122()()()DxkxExkxFxkx,,,,,,其中12
xx,且12xx,满足方程22(14)4kx+=,故212214xxk=−=+.①由6EDDF=知01206()xxxx−=−,得021221510(6)77714xxxxk=+==+;由D在AB上知0022xkx+=,得0212xk=+.所以221012714kk=++,化简得224
2560kk−+=,解得23k=或38k=.·················································································································6分
(Ⅱ)解法一:根据点到直线的距离公式和①式知,点EF,到AB的距离分别为21112222(1214)55(14)xkxkkhk+−+++==+,DFByxAOE22222222(1214)55(14)xkxkkhk+
−+−+==+.········································································9分又2215AB=+=,所以四边形AEBF的面积为121()2SABhh=+214(12)525(14)kk+=+22(12)14kk
+=+22144214kkk++=+22≤,当21k=,即当12k=时,上式取等号.所以S的最大值为22.·································12分解法二:由题设,1BO=,2AO=.设11ykx=,22yk
x=,由①得20x,210yy=−,故四边形AEBF的面积为BEFAEFSSS=+△△222xy=+··························································
··········································································9分222(2)xy=+22222244xyxy=++22222(4)xy+≤22=,当222xy=时,上式取等号.所以S的最大值为22.·····
···············································12分