【文档说明】《黑龙江中考真题数学》2012年黑龙江省齐齐哈尔中考数学试卷及解析.docx,共(23)页,367.639 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-4b96cab6664570aa0af21a17a1d74aab.html
以下为本文档部分文字说明:
2012年黑龙江省齐齐哈尔市黑河市中考数学试卷一、填空题(每题3分,满分33分)1.(3分)2012年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有691万人以不同方式向她表示问候和祝福,将691万人
用科学记数法表示为_________人.(结果保留两个有效数字)2.(3分)函数y=+中,自变量x的取值范围是_________.3.(3分)如图,已知AC=BD,要使△ABC≌△DCB,则只需添加一个
适当的条件是_________.(填一个即可)4.(3分)因式分解:27x2﹣3y2=_________.5.(3分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,
从口袋中随机取出一个白球的概率是,则y与x之间的函数关系式为_________.6.(3分)如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为_________.7.(3分)由一些完
全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是_________.8.(3分)用半径为9,圆心角为120°的扇形围成一个圆锥,则圆锥的高为_________.9.(3分)Rt△ABC中,∠A=90
°,BC=4,有一个内角为60°,点P是直线AB上不同于A、B的一点,且∠ACP=30°,则PB的长为_________.10.(3分)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为_________.11
.(3分)如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2012的坐标为_____
____.二、选择题(共9小题,每小题3分,满分27分)12.(3分)下列各式:①x2+x3=x5;②a3•a2=a6;③;④;⑤(π﹣1)0=1,其中正确的是()A.④⑤B.③④C.②③D.①④13.(3分)下列图形既是轴对称图形,又是中心对称图形
的是()A.B.C.D.14.(3分)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣πB.4﹣2πC.8+πD.8﹣2π15.(3分)2012年5月份,鸡西
地区一周空气质量报告中某项污染指数的数据是:31,35,30,31,34,32,31,这组数据的中位数、众数分别是()A.32,31B.31,31C.31,32D.32,3516.(3分)一天晚饭后,小明陪妈妈从家里出去散步,如图描述
了他们散步过程中离家的距离S(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是()A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,
然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回17.(3分)为庆祝“六•一”国际儿童节,鸡冠区某小学组织师生共360人参加公园游园活动,有A、B两种型
号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有()A.3种B.4种C.5种D.6种18.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0
;②b2﹣4ac<0;③4a﹣2b+c<0;④b=﹣2a.则其中结论正确的是()A.①③B.③④C.②③D.①④19.(3分)若关于x的分式方程=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.520.(
3分)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④A
D≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=sin30°,b=tan45°.22.(6
分)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得
到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.23.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在
一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.24.(7分)6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1000人,为
了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频率分布直方图如下:分组频数频率49.5~59.50.0859.5~69.50.1269.5~79.52079.5~89.53289.5~
100.5a(1)直接写出a的值,并补全频数分布直方图.(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为80分的至少有多少人?25.(8分)黄岩岛是我国南沙群岛的一个小岛,渔
产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时
间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?26.(
8分)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并
给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.27.(10分)为了迎接
“五•一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求
购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价﹣进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优
惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货?28.(10分)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程
x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒
.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在
,请说明理由.2012年黑龙江省齐齐哈尔市黑河市中考数学试卷参考答案与试题解析一、填空题(每题3分,满分33分)1.(3分)考点:科学记数法与有效数字。328789分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n
中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.解答:解:691万=6910000=6.91×106≈6.9×106.故答案为:6.9×106.点评:本题考查了科学记数法与有效数字.从左边第一个不是0的数开始数起,到精确到
的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.2.(3分)考点:函数自变量的取值范围。328789分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就
可以求解.解答:解:根据题意得:,解得:x<1且x≠0,故答案是:x<1且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(3分)考点:全等三角形的判定。328789专题:开放型。分析:由AC=BD,BC是公共边,即可得要证△ABC≌△
DCB,可利用SSS或SAS证得.解答:解:∵AC=BD,BC是公共边,∴要使△ABC≌△DCB,需添加:①AB=DC(SSS),②∠ACB=∠DBC(SAS).故答案为:此题答案不唯一:如AB=DC或∠ACB=∠DBC.点评:此题考查了全等三角形的判定.此题属于开放题,注意判定两
个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.(3分)考点:提公因式法与公式法的综合运用。328789分析:首先提公因式3,然后利用平方差公式分解.解答:解:原式=3(9x2﹣y2)=3(3x+y)(3x﹣y).故答案是:3(3x+y)(3x﹣y).点评:本题考查了用提公因
式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止5.(3分)考点:概率公式。328789分析:根据白球的概率公式:得到相应的方程:=,根据方程求解即可.解答:解:∵
取出一个白球的概率P=,∴=,∴12+4x=7+x+y,∴y与x的函数关系式为:y=3x+5.故答案为:y=3x+5.点评:此题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A
的概率P(A)=.6.(3分)考点:翻折变换(折叠问题)。328789分析:由AD=8,且△AFD的面积为60,即可求得AF与DF的长,由折叠的性质,可得CD=DF,然后在Rt△BEF中,利用勾股定理即可求得CE的长,继而求得△DEC的面积.解答:解:∵四边形ABCD是矩形,∴∠A=∠
B=90°,BC=AD=8,CD=AB,∵△AFD的面积为60,即AD•AF=60,解得:AF=15,∴DF==17,由折叠的性质,得:CD=CF=17,∴AB=17,∴BF=AB﹣AF=17﹣15=2,设CE=x,则EF=CE=x,BE=BC﹣CE=8﹣x,在Rt△BEF中
,EF2=BF2+BE2,即x2=22+(8﹣x)2,解得:x=,即CE=,∴△DEC的面积为:CD•CE=×17×=.故答案为:.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意折叠中的对应关系.7.(3分)考点:由三
视图判断几何体。328789分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可
确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面
的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.(3分)考点:圆锥的计算。328789分析:根据圆的周长公式和扇形的弧长公式,求出底面圆的半径,进而得出圆锥的高.解答:解:圆的周长即为扇形的弧长,列出关系式:=2πR,又
因为n=120,r=9,所以=2πR,解得R=3,根据圆锥底面圆的半径为3,母线长为9,则圆锥的高为:h==6,则圆锥的高为:6,故答案为:6.点评:本题考查了圆锥的计算,建立起圆锥底边周长和扇形弧长的关系式,即可解答.9.(3分)考点
:含30度角的直角三角形;勾股定理。328789专题:分类讨论。分析:分两种情况考虑:当∠ABC=60°时,如图所示,由∠ABC=60°,利用直角三角形的两锐角互余求出∠CAB=30°,又∠PCA=30°,由∠PCA+∠ACB求出∠
PCB为60°,可得出三角形PCB为等边三角形,根据等边三角形的三边相等,由BC的长即可求出PB的长;当∠ABC=30°时,再分两种情况:(i)P在A的右边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠PCA+∠ACB求出∠PCB为直角,由∠ABC=
30°及BC的长,利用锐角三角形函数定义及cos30°的值,即可求出PB的长;当P在A的左边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠ACB﹣∠ACP求出∠PCB为30°,得到∠PCB=∠ABC,利用等角对等边得到PC=PB,由BC及∠A
BC=30°,利用30°所对的直角边等于斜边的一半求出AC的长,再利用勾股定理求出AB的长,由AB﹣BP表示出AP,在直角三角形ACP中,利用勾股定理列出关于PB的方程,求出方程的解得到PB的长,综上,得到所有满足题意的PB的长.解答:解:
分两种情况考虑:当∠ABC=60°时,如图所示:∵∠CAB=90°,∴∠BCA=30°,又∠PCA=30°,∴∠PCB=∠PCA+∠ACB=60°,又∠ABC=60°,∴△PCB为等边三角形,又BC=4,∴PB=4;当
∠ABC=30°时,如图所示:(i)当P在A的右边时,如图所示:∵∠PCA=30°,∠ACB=60°,∴∠PCB=90°,又∠B=30°,BC=4,∴cosB=,即cos30°=,解得:PB==;(ii)当P在A的左边时,如图所示:∵∠PCA=30°
,∠ACB=60°,∴∠BCP=30°,又∠B=30°,∴∠BCP=∠B,∴CP=BP,在Rt△ABC中,∠B=30°,BC=4,∴AC=BC=2,根据勾股定理得:AB==2,∴AP=AB﹣PB=2﹣PB,在Rt△APC中,根据勾股定理得:AC2+AP2=CP2=
BP2,∴22+(2﹣BP)2=BP2,解得:BP=,综上,BP的长分别为4或或.故答案为:4或或点评:此题考查了含30°直角三角形的性质,勾股定理,等边三角形的判定与性质,以及锐角三角函数定义,利用了转化及分类讨论的数学思想,熟练掌握性质及定理是解本题的关键.10.(3分)考点:反比例函数
系数k的几何意义。328789分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.解答:解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边
形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的
几何意义.11.(3分)考点:正方形的性质;坐标与图形性质。328789专题:规律型。分析:首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2012的坐标.解答:解:∵正方形OABC边长为1,∴OB=
,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(0,2),同理可知OB2=2,B2点坐标为(﹣2,2),同理可知OB3=4,B3点坐标为(﹣4,0),B4点坐标为(﹣4,﹣4),
B5点坐标为(0,﹣8),B6(8,﹣8),B7(16,0)B8(16,16),B9(0,16),由规律可以发现,每经过9次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2012÷9=223…5,∴B2012的纵横坐标符
号与点B4的相同,纵横坐标都是负值,∴B2012的坐标为(﹣21006,﹣21006).故答案为(﹣21006,﹣21006).点评:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过9次作图后,点的坐标符号与第一次坐标符号相同
,每次正方形的边长变为原来的倍,此题难度较大.二、选择题(共9小题,每小题3分,满分27分)12.(3分)考点:二次根式的性质与化简;合并同类项;同底数幂的乘法;零指数幂;负整数指数幂。328789分析:利用合并同类项、同底数幂的乘法、二次根式的化简、负指数幂与零指数幂的性质求解即
可求得答案.解答:解:①x2+x3≠x5,故错误;②a3•a2=a5,故错误;③=|﹣2|=2,故错误;④=3,故正确;⑤(π﹣1)0=1,故正确.故正确的是:④⑤.故选A.点评:此题考查了合并同类项、同底数幂的乘法、二次根式的化简、负指数幂
与零指数幂的性质.此题比较简单,解题的关键是掌握指数的变化.13.(3分)考点:中心对称图形;轴对称图形。328789分析:根据轴对称图形与中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,是中心对称图
形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.点评:本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形
两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.(3分)考点:扇形面积的计算;切线的性质。328789分析:根据圆周角定理可以求得∠A的度数,即可求得扇形EAF的面积,根据阴影部分的面积=△ABC的面积﹣扇形
EAF的面积即可求解.解答:解:△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=90°.则扇形EAF的面积是:=π.故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.故选A.点评:本题主要考查了扇形面积的计算,正确求得扇形的圆
心角是解题的关键.15.(3分)考点:众数;中位数。328789分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、31、31、31、32、34、35,数
据31出现了三次最多为众数,31处在第4位为中位数.所以本题这组数据的中位数是31,众数是31.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一
定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.16.(3分)考点:函数的图象。328789分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,
与x轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解答:解:A、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C、从家出发,一直散步(没有停留),然后回家了,图形为上
升和下降的两条折线,错误;D、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确.故选D.点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用
排除法判断.17.(3分)考点:二元一次方程的应用。328789分析:可设租用A型号客车x辆,B型号客车Y辆,根据共360人参加公园游园活动可列方程,再根据车辆数为非负整数求解即可.解答:解:设租用A型号客车x辆
,B型号客车Y辆,则45x+30y=360,即3x+2y=24,当x=0时,y=12,符合题意;当x=2时,y=9,符合题意;当x=4时,y=6,符合题意;当x=6时,y=3,符合题意;当x=8时,y=0,符合题意.故师生一次性全部到达公园的租车方案有5种.故选C.点评:考查了二元一次方
程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的条件“每辆车必须满载”.18.(3分)考点:二次函数图象与系数的关系。328789专题:计算题。分析:由抛物线开口向下,得到a小于0,再由对称轴在y轴右侧,得到a与b异号,可得出b大
于0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项①错误;由抛物线与x轴有2个交点,得到根的判别式b2﹣4ac大于0,选项②错误;由x=﹣2时对应的函数值小于0,将x=﹣2代入抛物线解析式可得出4a﹣2b+c大于0,最后由对称轴为直线x=1,利用对称轴公式得到
b=﹣2a,得到选项④正确,即可得到正确结论的序号.解答:解:由抛物线的开口向下,得到a<0,∵﹣>0,∴b>0,由抛物线与y轴交于正半轴,得到c>0,∴abc<0,选项①错误;又抛物线与x轴有2个交点,∴b2﹣4ac>0,选项②错误;∵x=﹣2时对应的函数值为负数,∴4a﹣2b+c<
0,选项③正确;∵对称轴为直线x=1,∴﹣=1,即b=﹣2a,选项④正确,则其中正确的选项有③④.故选B点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开
口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意x=1,﹣1,2及﹣2对应函数值的正负来判断其式子的正确与否.19.(3分)考点:分式方程的解。328789分析:先把方程两边乘以
x(x﹣3)得到x(2m+x)﹣x(x﹣3)=2(x﹣3),整理得(2m+1)x=﹣6,由于关于x的分式方程=无解,则可能有x=3或x=0,然后分别把它们代入(2m+1)x=﹣6,即可得到m的值,然后再讨论
方程(2m+1)x=﹣6无解得到m=﹣.解答:解:去分母得,x(2m+x)﹣x(x﹣3)=2(x﹣3),整理得,(2m+1)x=﹣6,∵关于x的分式方程=无解,∴x=3或x=0,把x=3代入(2m+1)x=﹣6得,(2m+1)×3=﹣6,解得x=﹣1
.5;把x=0代入(2m+1)x=﹣6得,(2m+1)×0=﹣6,无解,又∵2m+1=0时,方程(2m+1)x=﹣6无解,∴m=﹣,所以m的值为﹣1.5或﹣0.5.故选D.点评:本题考查了分式方程的解:把分式方程转化为整式方程
,然后把整式方程的解代入原方程进行检验,若整式方程的解使分式方程的分母不为零,则这个整式方程的解是分式方程的解;若整式方程的解使分式方程的分母为零,则这个整式方程的解是分式方程的增根.20.(3分)考点:全等三角形的判定与性质;等腰直角三角形;旋转的性质。328789分析:先由ASA证明
△AED≌△CFD,得出AE=CF,再由勾股定理即可得出BE+CF=AB=BC,从而判断①;设AB=AC=a,AE=CF=x,先由三角形的面积公式得出S△AEF=﹣(x﹣a)2+a2,S△ABC=×a2=a2,再根据二次函数的性质即可判断②;由勾股定理得到EF的表达式
,利用二次函数性质求得EF最小值为a,而AD=a,所以EF≥AD,从而④错误;先得出S四边形AEDF=S△ADC=AD,再由EF≥AD得到AD•EF≥AD2,∴AD•EF>S四边形AEDF,所以③错误;如果四边形AEDF为平行四边形,则AD与
EF互相平分,此时DF∥AB,DE∥AC,又D为BC中点,所以当E、F分别为AB、AC的中点时,AD与EF互相平分,从而判断⑤.解答:解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠M
DN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=A
B==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF=AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(
x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CF
D+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.
点评:本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积,函数的性质等知识,综合性较强,有一定难度.三、解答题(满分60分)21.(5分)考点:分式的化简求值;特殊角的三角函数值。328789专题:计算题。分析:将括号内的部分通分,再将分式的除法转化为乘法,然后根据特
殊角的三角函数值求出a、b的值,再代入进行解答.解答:解:原式=×=×=a﹣b.又∵a=sin30°=,b=tan45°=1,∴原式=a﹣b=﹣1=﹣.点评:本题考查了分式的化简求值、特殊角的三角函数值,解这类题的关键是利用分解因式的方法化简分式,将已知量与
未知量联系起来.22.(6分)考点:作图-旋转变换;作图-平移变换。328789专题:作图题。分析:(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)根据△ABC向上平移4个单位后得到的△A
1B1C1,△ABC向上平移过程中,求边AC所扫过区域是以4为边长,以2为高的平行四边形,由平行四边形的面积公式即可得出结论.解答:解:(1)、(2)如图所示:(3)∵△ABC向上平移4个单位后得到的△A1B1C1,△ABC向上平移过程中,边AC所扫过
区域是以4为边长,以2为高的平行四边形,∴边AC所扫过区域的面积=4×2=8.点评:本题考查的是平移变换及旋转变换,熟知图形经过平移与旋转后所得图形与原图形全等是解答此题的关键.23.(6分)考点:待定系数法求二次函数解析式;轴对称-最短路线问题。328789专题:计算
题。分析:(1)根据OC=3,可知c=3,于是得到抛物线的解析式为y=﹣x2+bx+3,然后将A(﹣2,0)代入解析式即可求出b的值,从而得到抛物线的解析式;(2)由于BD为定值,则△BDP的周长最小,即BP+DP最小,由于点A和点B关于对称轴对称,则即BP+DP=AP+DP
,当A、P、D共线时BP+DP=AP+DP最小.解答:解:(1)∵OA=2,OC=3,∴A(﹣2,0),C(0,3),∴c=3,将A(﹣2,0)代入y=﹣x2+bx+3得,﹣×(﹣2)2﹣2b+3=0,解得b=,可得函数解析式为y=﹣x2
+x+3;(2)如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则即BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.设AD的解析式为y=kx+b,将A(﹣2,0),D(2,2)分别代入解析式得,,解得,,故直线解析式为y=x+1,(﹣1<x<2),由于
二次函数的对称轴为x=﹣=,则当x=时,y=×+1=,故P(,).点评:本题考查了待定系数法求二次函数解析式和轴对称﹣﹣﹣最短路径问题,先假设存在P,若能解出P的坐标,则P存在;否则,P不存在.24.(7分)考点:频数(率)分布直方图;频数(率)分布表。328789专题:图表型。分析:(
1)根据第一组的频数8与频率0.08,列式求出被抽取的学生的总人数,再根据频率求出第二组的频数,然后求出最后一组的频数,用频数除以被抽取的总人数即可得到a的值;根据计算补全统计图即可;(2)用后两组的频率乘以参赛总人数1000,
计算即可得解;(3)根据中位数的定义,确定被抽取的100名学生中的第50与第51人都在第四组,可知第51人使这一组的第11人,从而得解.解答:解:(1)被抽取的学生总人数为:8÷0.08=100人,59.5~69.5的频数为:100×0.12=12,89
.5~100.5的频数为:100﹣8﹣12﹣20﹣32=100﹣72=28,所以,a==0.28,补全统计图如图;(2)成绩优秀的学生约为:1000×=600(人);(3)根据统计表,第50人与第51人都在79.5~89.5一组,∵中位数是80,而这
一组的最低分是80,∴得分为80分的至少有:51﹣8﹣12﹣20=51﹣40=11.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,本题的关键在于根据频数分布表与频
数分布直方图得到49.5~59.5一组的信息,然后求出被抽查的学生的人数.25.(8分)考点:一次函数的应用。328789分析:(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)由图象可知
,当8<t≤13时,渔船和渔政船相遇,利用“两点法”求渔政船的函数关系式,再与这个时间段,渔船的函数关系式联立,可求相遇时,离港口的距离,再求两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔
政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.解答:解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)设渔政船离港口的距离s与渔船离开港口的时间t之间的函数
关系式为s=kt+b,则,解得.所以s=45t﹣360;联立,解得.所以渔船离黄岩岛的距离为150﹣90=60(海里);(3)s渔=﹣30t+390,s渔政=45t﹣360,分两种情况:①s渔﹣s渔政=3
0,﹣30t+390﹣(45t﹣360)=30,解得t=(或9.6);②s渔政﹣s渔=30,45t﹣360﹣(﹣30t+390)=30,解得t=(或10.5).所以,当渔船离开港口9.6小时或10.4小时时,两船相距30海里.点评:本题考查了一次函数的应用.关键是根据图象求出渔船的分段函
数的解析式及渔政船行驶的函数关系式.26.(8分)考点:旋转的性质;全等三角形的判定与性质;正方形的性质;梯形。328789专题:几何综合题。分析:(1)先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠
BCD=180°,再把△ABM绕点B顺时针旋转90°,点A与点C重合,点M到达点M′,根据旋转变换的性质,△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,根据全等三角形对应角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后证
明M′、C、N三点共线,再利用“边角边”证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证;(2)在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用“角边角”证明△ABM和△CBM′全等,根据全等三角形对应边相等可
得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用“边角边”证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN﹣AM.解答:解:(1)MN=AM+CN.理由如下:如图,∵BC∥A
D,AB=BC=CD,∴梯形ABCD是等腰梯形,∴∠A+∠BCD=180°,把△ABM绕点B顺时针旋转90°到△CBM′,则△ABM≌△CBM′,∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠
M′BC,∴∠BCM′+∠BCD=180°,∴点M′、C、M三点共线,∵∠MBN=∠ABC,∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△BMN和△BM′N中,∵,∴△BMN≌△BM′N(SAS),∴MN=M′N,又∵M′N
=CM′+CN=AM+CN,∴MN=AM+CN;(2)MN=CN﹣AM.理由如下:如图,作∠CBM′=∠ABM交CN于点M′,∵∠ABC+∠ADC=180°,∴∠BAD+∠C=360°﹣180°=180°,又∵∠BAD+
∠BAM=180°,∴∠C=∠BAM,在△ABM和△CBM′中,∵,∴△ABM≌△CBM′(ASA),∴AM=CM′,BM=BM′,∵∠MBN=∠ABC,∴∠M′BN=∠ABC﹣(∠ABN+∠CBM′)=∠ABC
﹣(∠ABN+∠ABM)=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△MBN和△M′BN中,∵,∴△MBN≌△M′BN(SAS),∴MN=M′N,∵M′N=CN﹣CM′=CN﹣AM,∴MN
=CN﹣AM.点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰梯形的两底角互补,利用旋转变换作辅助线,构造出全等三角形,把MN、AM、CN通过等量转化到两个全等三角形的对应边是解题的关键,本题灵活性较强,对同学们的能力要求较高.27.(10分)考点:一次函数的应用;二元一次方
程组的应用;一元一次不等式组的应用。328789分析:(1)设购进甲种服装x件,则乙种服装是(200﹣x)件,根据两种服装共用去32400元,即可列出方程,从而求解;(2)设购进甲种服装y件,则乙种服装是(200﹣y)件,根据总利润(利润=售
价﹣进价)不少于26700元,且不超过26800元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解;(3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.解答:解:(1)设购进甲种服装x件,则乙
种服装是(200﹣x)件,根据题意得:180x+150(200﹣x)=32400,解得:x=80,200﹣x=200﹣80=120(件),则购进甲、乙两种服装80件、120件;(2)设购进甲种服装y件,则乙种服装是(200
﹣y)件,根据题意得:,解得:70≤y≤80,又∵y是正整数,∴共有11种方案;(3)设总利润为W元,W=(140﹣a)y+130(200﹣y)即w=(10﹣a)y+26000.①当0<a<10时,1
0﹣a>0,W随y增大而增大,∴当y=80时,W有最大值,即此时购进甲种服装80件,乙种服装120件;②当a=10时,(2)中所以方案获利相同,所以按哪种方案进货都可以;③当10<a<20时,10﹣a<0,W随y增大而减小.当y=70时,W有最大值,即此时购进甲种服装70件,
乙种服装130件.点评:本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用y表示出利润是关键.28.(10分)考点:相似形综合题;解一元二次方程-因式分解法;平行四边形的判定;矩形的性质;相似三角形的判定与性质。328789分析:(1)解一元
二次方程,求出OA、OB的长度,从而得到A、B点的坐标;(2)△APQ与△AOB相似时,存在两种情况,需要分类讨论,不要遗漏,如图(2)所示;(3)本问关键是找齐平行四边形的各种位置与性质,如图(3)所示.在求M1,M2坐标时,注意到M1,M2与Q点坐标的对应关系,则容易求解;在
求M3坐标时,可以利用全等三角形,得到线段之间关系.解答:解:(1)解方程x2﹣7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(0,3),B(4,0).(2)在Rt△AOB中,OA=3,OB=4,∴A
B=5,∴AP=t,QB=2t,AQ=5﹣2t.△APQ与△AOB相似,可能有两种情况:(I)△APQ∽△AOB,如图(2)a所示.则有,即,解得t=.此时OP=OA﹣AP=,PQ=AP•tanA=,∴Q(,);(II)△APQ∽△ABO,如图(2)b所示.则有,即,
解得t=.此时AQ=,AH=AQ•cosA=,HQ=AQ•sinA=,OH=OA﹣AH=,∴Q(,).综上所述,当t=秒或t=秒时,△APQ与△AOB相似,所对应的Q点坐标分别为(,)或(,).(3)结论:存在.如图(3)
所示.∵t=2,∴AP=2,AQ=1,OP=1.过Q点作QE⊥y轴于点E,则QE=AQ•sin∠QAP=,AE=AQ•cos∠QAP=,∴OE=OA﹣AE=,∴Q(,).∵▱APQM1,∴QM1⊥x轴,且QM1=AP=2,∴M1(,);∵▱APQM2,∴QM2⊥x
轴,且QM2=AP=2,∴M2(,);如图(3),过M3点作M3F⊥y轴于点F,∵▱AQPM3,∴M3P=AQ,∠QAE=∠M3PF,∴∠PM3F=∠AQE;在△M3PF与△QAE中,∵∠QAE=∠M3PF,M3P=AQ,∠PM3F=∠AQE,∴△M3PF≌△QAE,∴M3F=QE=,PF=AE
=,∴OF=OP+PF=,∴M3(﹣,).∴当t=2时,在坐标平面内,存在点M,使以A、P、Q、M为顶点的四边形是平行四边形.点M的坐标为:M1(,),M2(,),M3(﹣,).点评:本题是动点型压轴题,综合考查了相似三角形的判定与性质、全等三角形的判定与性质、解一元二次方程
、平行四边形等知识点.本题难点在于分类讨论思想的应用,第(2)(3)问中,均涉及到多种情况,需要逐一分析不能遗漏;另外注意解答中求动点时刻t和点的坐标的过程中,全等三角形、相似三角形、三角函数等知识发挥了重要作用,这是解答压轴
题的常见技巧,需要熟练掌握.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com