【文档说明】高考统考数学理科北师大版一轮复习教师用书:第7章 第5节 空间向量的运算及应用 含解析.doc,共(13)页,497.000 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-4478e6240aac495f2cd5a774be29b96b.html
以下为本文档部分文字说明:
空间向量的运算及应用[考试要求]1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线
的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方
向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b
≠0),a∥b的充要条件是存在实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.(3)空间向量基本定理:如果三个向量a
,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底.3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律:①结合律:(λa)·b=λ(a·
b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·ba1b1+a2b2+a3b3共线a=λb(
b≠0,λ∈R)a1=λb1,a2=λb2,a3=λb3垂直a·b=0(a≠0,b≠0)a1b1+a2b2+a3b3=0模|a|a21+a22+a23夹角〈a,b〉(a≠0,b≠0)cos〈a,b〉=a1b1+a2b2+a3b3a21+a22+a23·b21+b22+b23
5.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称AB→为直线l的方向向量,与AB→平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与
平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为n·a=0,n·b=0.6.空间
位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为ml∥αn⊥m⇔n·m=0l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,mα∥β
n∥m⇔n=λmα⊥βn⊥m⇔n·m=0[常用结论](1)对空间任一点O,若OP→=xOA→+yOB→(x+y=1),则P,A,B三点共线.(2)对空间任一点O,若OP→=xOA→+yOB→+zOC→(
x+y+z=1),则P,A,B,C四点共面.(3)平面的法向量的确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为n·a=0,n·b=0.一、易错易误辨析(正确的打“√”,错
误的打“×”)(1)空间中任意两非零向量a,b共面.()(2)若A,B,C,D是空间任意四点,则有AB→+BC→+CD→+DA→=0.()(3)对于非零向量b,由a·b=b·c,则a=c.()(4)两向
量夹角的范围与两异面直线所成角的范围相同.()[答案](1)√(2)√(3)×(4)×二、教材习题衍生1.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则()A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C[∵n
1≠λn2,且n1·n2=-23≠0,∴α,β相交但不垂直.]2.在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若AB→=a,AD→=b,AA1→=c,则下列向量中与BM→相等
的向量是()A.-12a+12b+cB.12a+12b+cC.-12a-12b+cD.12a-12b+cA[BM→=BB1→+B1M→=AA1→+12(AD→-AB→)=c+12(b-a)=-12a+12b+c.]3.O为空间中任意一点,A,B,C三点不共线,且OP
→=34OA→+18OB→+tOC→,若P,A,B,C四点共面,则实数t=________.18[∵P,A,B,C四点共面,∴34+18+t=1,∴t=18.]4.正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________.2[|EF→|2=
EF→2=(EC→+CD→+DF→)2=EC→2+CD→2+DF→2+2(EC→·CD→+EC→·DF→+CD→·DF→)=12+22+12+2(1×2×cos120°+0+2×1×cos120°)=2,所以|EF→|=2,所以EF的长为2.]考点一空间向量的线性运算用基
向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.1.如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为O
A,BC的中点,点G在线段MN上,且MG→=2GN→,若OG→=xOA→+yOB→+zOC→,则x+y+z=________.56[连接ON,设OA→=a,OB→=b,OC→=c,则MN→=ON→-OM→=12(OB→+OC→)-12OA→=
12b+12c-12a,OG→=OM→+MG→=12OA→+23MN→=12a+2312b+12c-12a=16a+13b+13c.又OG→=xOA→+yOB→+zOC→,所以x=16,y=13,z=13,因此x+y+z=16+13+13=56.]2.如图所示
,在平行六面体ABCD-A1B1C1D1中,设AA1→=a,AB→=b,AD→=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:(1)AP→;(2)A1N→;(3)MP→+NC1→.[解](1)因为P是C1D1的中点,所以AP→=AA1→+A1D1→+D1P→=a
+AD→+12D1C1→=a+c+12AB→=a+c+12b.(2)因为N是BC的中点,所以A1N→=A1A→+AB→+BN→=-a+b+12BC→=-a+b+12AD→=-a+b+12c.(3)因为M
是AA1的中点,所以MP→=MA→+AP→=12A1A→+AP→=-12a+a+c+12b=12a+12b+c,又NC1→=NC→+CC1→=12BC→+AA1→=12AD→+AA1→=12c+a,所以MP
→+NC1→=12a+12b+c+a+12c=32a+12b+32c.点评:空间向量的线性运算类似于平面向量中的线性运算.考点二共线(共面)向量定理的应用证明三点共线和空间四点共面的方法比较三点(P,A,B)共线空间四点(M,P,A,B)共面PA→=λPB→且同过
点PMP→=xMA→+yMB→对空间任一点O,OP→=OA→+tAB→对空间任一点O,OP→=OM→+xMA→+yMB→对空间任一点O,OP→=xOA→+(1-x)OB→对空间任一点O,OP→=xOM→+yOA→+(1-x-y)OB→[典例1]如图,已知E,F,G,H分别为空间四边形ABC
D的边AB,BC,CD,DA的中点.(1)求证:E,F,G,H四点共面;(2)求证:BD∥平面EFGH.[证明](1)连接BG,EG,则EG→=EB→+BG→=EB→+12()BC→+BD→=EB→+BF→+EH→=EF→+EH→.
由共面向量定理的推论知E,F,G,H四点共面.(2)因为EH→=AH→-AE→=12AD→-12AB→=12(AD→-AB→)=12BD→,所以EH∥BD.又EH平面EFGH,BD平面EFGH,所以BD∥平面EFGH.点
评:证明点共面问题可转化为证明向量共面问题,如要证明P,A,B,C四点共面,只要能证明PA→=xPB→+yPC→,或对空间任一点O,有OA→=OP→+xPB→+yPC→,或OP→=xOA→+yOB→+zO
C→(x+y+z=1)即可.[跟进训练]1.已知a=(λ+1,0,2),b=(6,2μ-1,2λ),若a∥b,则λ与μ的值可以是()A.2,12B.-13,12C.-3,2D.2,2A[∵a∥b,∴设b=xa,∴x(λ+1)=
6,2μ-1=0,2x=2λ,解得μ=12,λ=2,或μ=12,λ=-3.故选A.]2.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于________.657[∵a与b不共线,故存
在实数x,y使得c=xa+yb,∴2x-y=7,-x+4y=5,3x-2y=λ,解得x=337,y=177,λ=657.故填657.]考点三空间向量数量积的应用空间向量数量积的应用(1)求夹角.设向量a,b所成的角为θ,则cosθ=a·b|
a||b|,进而可求两异面直线所成的角.(2)求长度(距离).运用公式|a|2=a·a,可使线段长度的计算问题转化为向量数量积的计算问题.(3)解决垂直问题.利用a⊥b⇔a·b=0(a≠0,b≠0),可将垂直问题转化
为向量数量积的计算问题.[典例2]如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.(1)求AC1的长;(2)求证:AC1⊥BD;(3)求BD1与AC夹角的余弦值.[解](1)记AB→=a,AD→=b,AA1→=c,则|a|
=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,∴a·b=b·c=c·a=12.|AC→1|2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a)=1+1+1+2×1
2+12+12=6,∴|AC1→|=6,即AC1的长为6.(2)证明:∵AC→1=a+b+c,BD→=b-a,∴AC→1·BD→=(a+b+c)·(b-a)=a·b+|b|2+b·c-|a|2-a·b
-a·c=b·c-a·c=|b||c|cos60°-|a||c|cos60°=0.∴AC→1⊥BD→,∴AC1⊥BD.(3)BD→1=b+c-a,AC→=a+b,∴|BD→1|=2,|AC→|=3,BD→1·AC→=(b+c-a)·(a+b
)=b2-a2+a·c+b·c=1.∴cos〈BD→1,AC→〉=BD→1·AC→|BD→1||AC→|=66.∴AC与BD1夹角的余弦值为66.点评:解决数量积的两条常用途径:一是数量积的定义,常借助基向量运算求解;二是坐标法,常用于可好建系的几何体(如正方体、长方体
等).[跟进训练]如图,已知直三棱柱ABC-A1B1C1,在底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别是A1B1,A1A的中点.(1)求BN→的模;(2)求cos〈BA1→,CB1→〉的值;(3)求证:A1B⊥C1M.[
解](1)如图,以点C作为坐标原点O,CA,CB,CC1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.由题意得B(0,1,0),N(1,0,1),所以|BN→|=(1-0)2+(0-1)2+(1-0)2=3.
(2)由题意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2),所以BA1→=(1,-1,2),CB1→=(0,1,2),BA1→·CB1→=3,|BA1→|=6,|CB1→|=5,所以cos〈BA1→,CB1→〉=BA1→·CB1→|BA1→||
CB1→|=3010.(3)证明:由题意得C1(0,0,2),M12,12,2,A1B→=(-1,1,-2),C1M→=12,12,0,所以A1B→·C1M→=-12+12+0=0,所以A1
B→⊥C1M→,即A1B⊥C1M.考点四利用向量证明平行与垂直(1)利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线
的方向向量平行面面平行①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题(2)利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将
线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示[典例3]如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,
AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角,求证:(1)CM∥平面PAD;(2)平面PAB⊥平面PAD.[解](1)证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为
z轴建立如图所示的空间直角坐标系C-xyz.∵PC⊥平面ABCD,∴∠PBC为PB与平面ABCD所成的角,∴∠PBC=30°.∵PC=2,∴BC=23,PB=4,∴D(0,1,0),B(23,0,0),A(23,4,0),P(0,0,2),M32,0
,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM→=32,0,32.设n=(x,y,z)为平面PAD的一个法向量,由DP→·n=0,DA→·n=0,即-y+2z=0,23x+3y=0
,令y=2,得n=(-3,2,1).∵n·CM→=-3×32+2×0+1×32=0,∴n⊥CM→.又CM平面PAD,∴CM∥平面PAD.(2)法一:由(1)知BA→=(0,4,0),PB→=(23,0,-2),设平面PAB的一个法向量为m=(x0,y0,z0),由
BA→·m=0,PB→·m=0,即4y0=0,23x0-2z0=0,令x0=1,得m=(1,0,3).又∵平面PAD的一个法向量n=(-3,2,1),∴m·n=1×(-3)+0×2+3×1=0,∴平面PAB⊥平面PAD.法二:取AP的中点E,连接BE,
则E(3,2,1),BE→=(-3,2,1).∵PB=AB,∴BE⊥PA.又∵BE→·DA→=(-3,2,1)·(23,3,0)=0,∴BE→⊥DA→.∴BE⊥DA.又PA∩DA=A,∴BE⊥平面PAD.又
∵BE平面PAB,∴平面PAB⊥平面PAD.点评:利用向量法证明空间位置关系的关键是相应坐标元素的正确求解.如本例中的点M可借助PB→=4PM→可得.[跟进训练]如图所示,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中
点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.[解]以A为原点,AB→,AD→,AA1→的方向分别为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系.设AB=a.(1)证明:A(0,0,0),D(0,1,
0),D1(0,1,1),Ea2,1,0,B1(a,0,1),故AD1→=(0,1,1),B1E→=-a2,1,-1.因为B1E→·AD1→=-a2×0+1×1+(-1)×1=0,因此B1E→⊥AD1→,所
以B1E⊥AD1.(2)存在满足要求的点P,假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时DP→=(0,-1,z0),再设平面B1AE的一个法向量为n=(x,y,z).AB1→=(a,0,1),AE→
=a2,1,0.因为n⊥平面B1AE,所以n⊥AB1→,n⊥AE→,得ax+z=0,ax2+y=0,取x=1,则y=-a2,z=-a,则平面B1AE的一个法向量n=1,-a2,-a.要使DP∥平面B1AE,只
要n⊥DP→,有a2-az0=0,解得z0=12.所以存在点P,满足DP∥平面B1AE,此时AP=12.