专题18二次函数与旋转变换综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版)

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 14 页
  • 大小 637.179 KB
  • 2024-12-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
专题18二次函数与旋转变换综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版)
可在后台配置第一页与第二页中间广告代码
专题18二次函数与旋转变换综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版)
可在后台配置第二页与第三页中间广告代码
专题18二次函数与旋转变换综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有2人购买 付费阅读2.40 元
/ 14
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】专题18二次函数与旋转变换综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx,共(14)页,637.179 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-43cff79379504a428ba9615fda1badac.html

以下为本文档部分文字说明:

挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)专题18二次函数与旋转变换综合问题【例1】(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,

3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在

点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.【例2】.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.(1)求此抛物线的解析式;(2)若点C的

坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A的对应点是点E.①写出点E的坐标,并判断点E是否在此抛物线上;②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.【例3】.(2022•辽宁)

如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于

点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【例4】.(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点

A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛

物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.一.解答题(共20小题)1.(

2022•碑林区校级三模)如图,在平面直角坐标系中,抛物线W1与x轴交于A,B两点,与y轴交于点C(0,﹣6),顶点为D(﹣2,2).(1)求抛物线W1的表达式;(2)将抛物线W1绕原点O旋转180°得到抛物线W2,抛物线W2的顶点为D′,在抛物线W2上是否存在点M,使S△D′A

D=S△D′DM?若存在,请求出点M的坐标;若不存在,请说明理由.2.(2022•双流区模拟)如图,抛物线C:y=ax2+6ax+9a﹣8与x轴相交于A,B两点(点A在点B的左侧),已知点B的横坐标是2,抛物线C的顶点为D.(1)求a的值及顶点D的坐标;

(2)点P是x轴正半轴上一点,将抛物线C绕点P旋转180°后得到抛物线C1,记抛物线C1的顶点为E,抛物线C1与x轴的交点为F,G(点F在点G的右侧).当点P与点B重合时(如图1),求抛物线C1的表达式;(3)如图2,在

(2)的条件下,从A,B,D中任取一点,E,F,G中任取两点,若以取出的三点为顶点能构成直角三角形,我们就称抛物线C1为抛物线C的“勾股伴随同类函数”.当抛物线C1是抛物线C的勾股伴随同类函数时,求点P的坐标.3.(2022•灞桥区校级模拟)已知:如图,在平面直角坐标系xOy中,直线y=x+6与

x轴、y轴的交点分别为A、B,其中点C是x轴上一点,OC=3.(1)求过A、B、C三点的抛物线L的解析式;(2)将抛物线L绕着点O旋转180°得到抛物线L1,抛物线L1与x轴交于F点、E点(点F在点E的

左侧),与y轴交于点M,则抛物线L1的对称轴上是否存在一点Q,使|QF﹣QM|的值最大?若存在,求出点Q的坐标及其最大值,若不存在,请说明理由.4.(2022•莲湖区二模)已知抛物线W1:y=ax2﹣bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点

与y轴交于点C,顶点为D.(1)求抛物线W1的表达式;(2)将抛物线W1绕原点O旋转180°后得到抛物线W2,W2的顶点为D',点M为W2上的一点,当△D'DM的面积等于△ABC的面积时,求点M的坐标.5.(2022•深圳三模

)已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;

(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.6.(2022•无锡二模)二次函数y=ax2+bx

+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N

为顶点的三角形与△FEN相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好

有2个,直接写出T的坐标.7.(2022•沙湾区模拟)如图,抛物线f(x):y=a(x+1)(x﹣5)与x轴交于点A、B(点A位于点B左边),与y轴交于点C(0,.(1)求抛物线f(x)的解析式;(2

)作点C关于x轴的对称点C',连接线段AC,作∠CAB的平分线AE交抛物线于点E,将抛物线f(x)沿对称轴向下平移经过点C'得到抛物线f'(x).在射线AE上取点F,连接FC,将射线FC绕点F逆时针旋转120°交抛物线f'(x)于点P.当△

ACF为等腰三角形时,求点P的横坐标.8.(2022•灌南县二模)如图,抛物线y=ax2+bx+3经过点A(1,0),B(3,0)两点,与y轴交于点C,其顶点为M,连接MA,MC,AC,过点C作y轴的垂线l.(1)求该抛物线的表达式;(2)直线l

上是否存在点N,使得S△MBN=2S△MAC?若存在,求出点N的坐标;若不存在,请说明理由.(3)如图2,若将原抛物线绕点C逆时针旋转45°,求新抛物线与y轴交点P坐标.9.(2022•红花岗区三模)如图(1),△ABC中,AC=BC=6,∠C=90°,点P在线段AC上

,从C点向A点运动,∠PBE=90°,BP=BE,PE交BC于点D,完成下列问题:(1)①点E到BC边的距离为;②若CD=x,△BDE的面积为S,则S与x的函数关系式为;(不写自变量取值范围)(2)当△BDE的面积

为15时,若PC<AC,以C为原点,AC、BC所在直线分别为x、y轴建立坐标系如图(2),抛物线C1过点A、D、B;①点Q在抛物线C1上,且位于线段PB的下方,过点Q作QN⊥PB,垂足为点N,是否存在点Q,使得QN最长,若存在,请求出QN的长度和Q点坐标;若不存在,请说明理

由;②将抛物线C1绕原点C旋转180°,得到抛物线C2,当﹣2a≤x≤﹣a时(a>0),抛物线C2有最大值2a,求a值.10.(2022•乳源县三模)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2+k(a≠0)图象与x轴交

于点A、B(点A在点B的左侧),与y轴交于点C,其中点B的坐标为(2,0),点C的坐标为(0,4).(1)求该抛物线的解析式;(2)如图1,若点P为抛物线上第二象限内的一个动点,点M为线段CO上一动点,当△APC的面积最大时,求△APM周长的最小值;(3)如图2,将原抛物线绕点A旋转1

80°,得新抛物线y',在新抛物线y'的对称轴上是否存在点Q使得△ACQ为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.11.(2021秋•亭湖区期末)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(0,﹣3),与x轴的交点为B、C,直线l:y=2x+2

与抛物线相交于点C,与y轴相交于点D,P是直线l下方抛物线上一动点.(1)求抛物线的函数表达式;(2)过点P作线段PM∥x轴,与直线l相交于点M,当PM最大时,求点P的坐标及PM的最大值;(3)把抛物线绕点O旋转180°

,再向上平移使得新抛物线过(2)中的P点,E是新抛物线与y轴的交点,F为原抛物线对称轴上一点,G为平面直角坐标系中一点,直接写出所有使得以B、E、F、G为顶点、BF为边的四边形是菱形的点G的坐标,并把求其中一个点G的坐标的过程写出来.12.(2021秋•北京期中)定义:如果抛物线

C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,则称抛物线C1与C2关联.例如,如图,抛物线y=x2的顶点(0,0)在抛物线y=﹣x2+2x上,抛物线y=﹣x2+2x的顶点(1,1)也在抛

物线y=x2上,所以抛物线y=x2与y=﹣x2+2x关联.(1)已知抛物线C1:y=(x+1)2﹣2,分别判断抛物线C2:y=﹣x2+2x+1和抛物线C3:y=2x2+2x+1与抛物线C1是否关联;(2)抛物线M1:的顶点为A,动点P的坐标为(t,2),将抛物线M1

绕点P(t,2)旋转180°得到抛物线M2,若抛物线M1与M2关联,求抛物线M2的解析式;(3)抛物线M1:的顶点为A,点B是与M1关联的抛物线的顶点,将线段AB绕点A按顺时针方向旋转90°得到线段AB1,若点B1恰好在y

轴上,请直接写出点B1的纵坐标.13.(2021•锡山区一模)如图,抛物线y=x2+bx+c的顶点为M,对称轴是直线x=1,与x轴的交点为A(﹣3,0)和B,将抛物线y=x2+bx+c绕点B逆时针方向旋转90°,点M1、A1为点

M、A旋转后的对应点,旋转后的抛物线与y轴相交于C,D两点.(1)写出点B的坐标及求原抛物线的解析式;(2)求证A,M,A1三点在同一直线上;(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD的面积最大?如果存在,请求出点P的坐标及四边

形PM1MD的面积;如果不存在,请说明理由.14.(2022秋•道里区校级期中)如图,在平面直角坐标系中,点O为坐标原点,直线y=x+3交x轴于点A,y轴于点D,抛物线y=x2+bx﹣3与x轴交于A,B两点,交y

轴于点C.(1)求抛物线的解析式;(2)P在第三象限抛物线上,P点横坐标为t,连接AP、DP,△APD的面积为s,求s关于t的函数关系式;(不要求写自变量t的取值范围)(3)在(2)的条件下,PD绕点P逆时针旋转,与线段AD相交于点E,且∠

EPD=2∠PDC,过点E作EF⊥PD交PD于G,y轴于点F,连接PF,若,求线段PF的长.15.(2022秋•大兴区期中)在平面直角坐标系xOy中,已知四边形OABC是平行四边形,点A(4,0),∠AOC=60°,点C的纵坐标为,点D是边BC上一点,

连接OD,将线段OD绕点O逆时针旋转60°得到线段OE.给出如下定义:如果抛物线y=ax2+bx(a≠0)同时经过点A,E,则称抛物线y=ax2+bx(a≠0)为关于点A,E的“伴随抛物线”.(1)如图1,当点D与点C重合时,点E的坐标为,此时关于点A,E的

“伴随抛物线”的解析式为;(2)如图2,当点D在边BC上运动时,连接CE.①当CE取最小值时,求关于点A,E的“伴随抛物线”的解析式;②若关于点A,E的“伴随抛物线”y=ax2+bx(a≠0)存在,直接写出a的取值范围.16

.(2020秋•天心区期末)如图1,在平面直角坐标系xOy中,抛物线C:y=﹣x2+bx+c与x轴相交于A,B两点,顶点为D,其中A(﹣4,0),B(4,0),设点F(m,0)是x轴的正半轴上一点,将抛物线

C绕点F旋转180°,得到新的抛物线C'.(1)求抛物线C的函数解析式;(2)若抛物线C'与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围;(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C'上的对应点P',设M是C上的

动点,N是C'上的动点,试探究四边形PMP'N能否成为正方形?若能,求出m的值;若不能,请说明理由.17.(2022•大庆模拟)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式

;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M

沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.18.(2022•苏州一模)如图,二次函数y=x2+bx+4的图象与x轴交于点A、B,与y轴

交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A的对称点为点G,点E运动时,

当点G恰好落在直线BC上时,求E点的坐标.19.(2022•大连模拟)已知抛物线G:y=(m+1)x2+2(n﹣1)x+n+1(m≠﹣1,m为常数)的对称轴与直线y=kx+k(k>0,k为常数)相交于x轴

上一点P.(1)求m与n的数量关系;(2)若直线y=kx+k与y轴交于点Q,且OQ=OP,①把直线y=kx+k绕点Q顺时针旋转45°得到的直线与抛物线G相交于A、B两点,若AB=4,求m的值;②将直线y=

kx+k向上平移2k个单位,得到的直线与抛物线G的两个交点的横坐标x1,x2满足﹣2<x1<x2<2,求m的取值范围.20.(2021•兰州)如图1,二次函数y=a(x+3)(x﹣4)图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求二次函数y=a(x+3)(x﹣4)的

表达式;(2)过点P作PQ⊥x轴分别交线段AB,抛物线于点Q,C,连接AC.当OP=1时,求△ACQ的面积;(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 128952
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?