【文档说明】《江苏中考真题数学》2017年江苏省常州市中考数学试卷(含解析版).docx,共(23)页,637.251 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-3e06682ca9824fd4ae6426f8f30b4db0.html
以下为本文档部分文字说明:
2017年江苏省常州市中考数学试卷一、选择题(每小题3分,共10小题,合计30分)1.-2的相反数是().A.-12B.12C.±2D.22.下列运算正确的是().A.m·m=2mB.(mn)3=mn3C.
(m2)3=m6D.m6÷a3=a33.右图是某个几何体的三视图,则该几何体是().A.圆锥B.三棱柱C.圆柱D.三棱锥4.计算:1xx−+1x的结果是().A.2xx+B.2xC.12D.15.若3x>-3y,则下列不等式中一定成立的
是().A.x+y>0B.x-y>0C.x+y<0D.x-y<06.如图,已知直线AB、CD被直线AE所截,AB∥CD,∠1=60°,则∠2的度数是()A.100°B.110°C.120°D.130°第6题图第7题图
第8题图7.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是().A.(2,7)B.(3,7)C.(3,8)D.(4,8)8.如图,已知□ABCD的四个内角的平分线分别相交于点E、F、G、H,
连接AC,若EF=2,FG=GC=5,则AC的长是().A.12B.13C.65D.83二、填空题:(本大题共10小题,每小题2分,共20分)9.计算:|-2|+(-2)0=.10.若二次根式2x−有意义,则实数x的取值范围是.11
.肥皂泡的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为.12.分解因式:ax2-ay2=.13.已知x=1是关于x的方程ax2-2x+3=0的一个根,则a=.14.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是.15.如图,已
知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.第15题图第16题图16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点.若∠DAB=40
°,则∠ABC=°.17.已知二次函数y=ax2+bx-3自变量x的部分取值和对应函数值y如下表:x…-2-10123…y…50-3-4-30…则在实数范围内能使得y-5>0成立的x的取值范围是.18.如图,已知点A是一次函数y=12x(x≥0)图像上一点,
过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(k)0)的图像过点B、C,若△OAB的面积为6,则△ABC的面积是.三、解答题:(本大题共6个小题,满分60分)19.(6分
)先化简,再求值:(x+2)(x-2)-x(x-1),其中x=-2.20.(8分)解方程和不等式组:(1)252xx−−=332xx−−-3(2)26415xx−+21.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”“打球”“书法”和“其他”四个选项,用随机抽样的方
法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是.(2)补全条形统计图;(3
)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.22.(8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出
1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.23.(8分)如图,已知在四边形ABCD中
,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需54
0元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种共50个,总费用不超过5500元,那么最多可购买多少个足球?25.(8分)如图,已知一次函数y=kx+b的图像与x轴交于点A,与反比例函数y=mx(x<0)的图像交于点B(-2,n),过点B作BC⊥x轴于点C
,点D(3-3n,1)是该反比例函数图像上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26.(10分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”
中,一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足时,四边形MNPQ是正方形;(2)如图2,已知△ABC中,∠ABC=90°,AB=
4,BC=3,D为平面内一点.①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.2
7.(10分)如图,在平面直角坐标系xOy中,已知二次函数y=-12x2+bx的图像过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CP的对称点为B′,当△OCB′为等边
三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2BD,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.28.(10分)如图,已知一次函数y=-43x+4的图像是直线l,设直线l分别与y轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点
M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x轴于点E.直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相
似时,求点P的坐标.2017年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共10小题,合计30分)1.-2的相反数是().A.-12B.12C.±2D.2答案:D.解析:数a的相反数是-a,所以-2的相反数是2,
故选D.2.下列运算正确的是().A.m·m=2mB.(mn)3=mn3C.(m2)3=m6D.m6÷a3=a3答案:C.解析:m·m=2m2,(mn)3=m3n3,(m2)3=m6,m6÷a3=a4,故正确的是C,故选C.3.右图是某个几何体的三视图,则该几何体是().A.圆锥B.三棱柱C.圆
柱D.三棱锥答案:B.解析:由三视图确定几何体,从三视图可以确定此几何体为三棱柱,故选B.4.计算:1xx−+1x的结果是().A.2xx+B.2xC.12D.1答案:D.解析:本题考查分式的加法,同分母
分式,分子相加减,原式=11xx−+=1,故选D.5.若3x>-3y,则下列不等式中一定成立的是().A.x+y>0B.x-y>0C.x+y<0D.x-y<0答案:A.解析:不等式的两边都除以3得x>-y,移项得x+y>0,
故选A.6.如图,已知直线AB、CD被直线AE所截,AB∥CD,∠1=60°,则∠2的度数是().A.100°B.110°C.120°D.130°答案:C.解析:∵AB∥CD,∠1=60°,∴∠3=∠1=60°,所以∠2=180°-60°=120°,故选C.7.如
图,已知矩形ABCD的顶点A、D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是().A.(2,7)B.(3,7)C.(3,8)D.(4,8)答案:A.解析:作BE⊥x轴于E,由题意知△ABE∽△DAO,因为OD=2OA=6,所以OA=3
,由勾股定理得AD=35,因为AD:AB=3:1,所以AB=5,所以BE=1,AE=2,由矩形的性质知,将点D向上平移一个单位,向右平移2个单位得到点C,所以点C的坐标为(2,7),故选A.8.如图,已知□AB
CD的四个内角的平分线分别相交于点E、F、G、H,连接AC,若EF=2,FG=GC=5,则AC的长是().A.12B.13C.65D.83答案:B.解析:作AM⊥CH交CH的延长线于H,因为四条内角平分线围成的四边形EFGH为矩形,所以AM=FG=5,MH=AE=CG=5,所以CM
=12,由勾股定理得AC=13,故选B.二、填空题:(本大题共10小题,每小题2分,共20分)9.计算:|-2|+(-2)0=.答案:3.解析:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,非零数的零次方都等于1,依此规则原式=2+1=3.10.若二次根式2x−有意义
,则实数x的取值范围是.答案:x≥2.解析:二次根式有意义需要满足被开方数为非负数,所以x-2≥0,解得x≥2.11.肥皂泡的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为.答案:7×10-4.解析:用科学记数
法表示较小的数,0.0007=7×10-4.12.分解因式:ax2-ay2=.答案:a(x+y)(x-y).解析:原式=a(x2-y2)=a(x+y)(x-y).13.已知x=1是关于x的方程ax2-2x+3=0的一
个根,则a=.答案:-1.解析:将x=1代入方程ax2-2x+3=0得a-2+3=0,解得a=-1.14.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是.答案:3π.解析:圆锥的侧面积=21×扇形半径×扇形弧长=2
1×l×(2πr)=πrl=π×1×3=3π.设圆锥的母线长为l,设圆锥的底面半径为r,则展开后的扇形半径为l,弧长为圆锥底面周长(2πR).我们已经知道,扇形的面积公式为:S=21×扇形半径×扇形弧长=21×l×(2πr)=πrl.即圆锥的
侧面积等于底面半径与母线和π的乘积.π×1×3=3π.15.(2017常州,15,2分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.答案:15.解析:因为DE垂直平分BC,所以DB=DC,所以△ABD的周长=
AD+AB+BD=AB+AD+CD=AB+AC=6+9=15.16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点.若∠DAB=40°,则∠ABC=°.答案:70°.解析:连接AC,OC,因为C是弧BD的中点,∠DAB=40°,所以∠C
AB=20°,所以∠COB=40°,由三角形内角和得∠B=70°.17.已知二次函数y=ax2+bx-3自变量x的部分取值和对应函数值y如下表:X…-2-10123…y…50-3-4-30…则在实数范围内能使得y-5>
0成立的x的取值范围是.答案:x>4或x<-2.解析:将点(-1,0)和(1,-4)代入y=ax2+bx-3得0343abab=−−−=+−,解得:12ab==−,所以该二次函数的解析式为
y=x2-2x-3,若y>5,则x2-2x-3>5,x2-2x-8>0,解一元二次方程x2-2x-8=0,得x=4或x=-2.根据函数图象判断y-5>0成立的x的取值范围是x>4或x<-2.18.如图,已知点A是一次函数y=12x(x≥0)图像上一点,过点A作x轴的垂线l,B是
l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(k)0)的图像过点B、C,若△OAB的面积为6,则△ABC的面积是.答案:18.解析:设点A(4a,2a),B(4a,2b),则C点的横坐标为4a+12(2b-2a),C点的坐标为
(3a+b,a+b).所以4a·2b=(3a+b)(a+b),(3a-b)(a-b)=0,解得:a=b(舍去)或b=3a.S△ABC=12(2b-2a)·4a=8a2=6,k=4a·2b=24a2=18.三、解答题:(本大题共6个小题,满分60分)19.(
6分)先化简,再求值:(x+2)(x-2)-x(x-1),其中x=-2.思路分析:先化简,再代入求值.解:原式=x2-4-x2+x=x-4,当x=-2时,原式=-2-4=-6.20.(8分)解方程和不等式组:(1)252xx−−=332xx−−-3(2)26415xx−+
思路分析:(1)解分式方程,检验方程的解是否为增根;(2)分别解两个不等式再确定不等式组的解集.解:(1)去分母得2x-5=3x-3-3(x-2),去括号移项合并同类项得,2x=-8,解得x=-4,经检验x=4是原方程的根,所以原方程
的根是x=4;(2)解不等式①得x≥-3,解不等式②得x<1,所以不等式组的解集是-3≤x<1.21.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”“打球”“书法”和“其他”四个选项,用随机抽样的方法调
查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是.(2)补全条形统计图;(3)该校共有2000名学生,请根据
统计结果估计该校课余兴趣爱好为“打球”的学生人数.思路分析:(1)利用爱好阅读的人数与占样本的百分比计算,30÷30%=100;(2)其他100×10%=10人,打球100-30-20-10=40人;(3)利
用样本中的数据估计总体数据.解:(1)100;(2)其他10人,打球40人;(3)2000×40100=800,所以估计该校课余兴趣爱好为“打球”的学生为数为800人.22.(8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球
,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为
偶数的概率.思路分析:(1)列举法求概率;(2)画树状图法求概率.解:(1)从4个球中摸出一个球,摸出的球面数字为1的概率是14;(2)用画树状图法求解,画树状图如下:从树状图分析两次摸球共出现12种可能情况,
其中两次摸出的乒乓球球面上数字之和为偶数的概率为:412=13.23.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若
AC=AE,求∠DEC的度数.思路分析:(1)证明△ABC≌△DEC;(2)由∠EAC=45°通过等腰三角形的性质求解.解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE,又∵∠BAC=∠D,BC=CE,∴△ABC≌△DEC,∴AC=CD
.(2)∵∠ACD=90°,AC=CD,∴∠EAC=45°,∵AE=AC∴∠AEC=∠ACE=12×(180°-45°)=67.5°,∴∠DEC=180°-67.5°=112.5°.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540
元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种共50个,总费用不超过5500元,那么最多可购买多少个足球?思路分析:(1)根据等量关系列方程组求解;(2)根据不等关系列不等式求解.解:(1)解设每个篮球售价x元,每个足球售价y元,根据题意得
:232032540xyxy+=+=,解得:100120xy==答:每个篮球售价100元,每个足球售价120元.(2)设学校最多可购买a个足球,根据题意得5746537565341323142231数字之和第二个球第一个球441324100(50-a)+120a≤
5500,解得:a≤25.答:学校最多可购买25个足球.25.(8分)如图,已知一次函数y=kx+b的图像与x轴交于点A,与反比例函数y=mx(x<0)的图像交于点B(-2,n),过点B作BC⊥x轴于点C,点D(3-3n,1)是该反比例函数图像上一点.
(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.思路分析:(1)将点B、D坐标代入反比例函数解析式求解m的值;(2)先求BD的解析式,再由线段垂直平分线的性质求得点A坐标,最后求AB的解析式.
解:(1)把B(-2,n),D(3-3n,1)代入反比例函数y=mx得,332nmnm−=−=解得:36mn==−,所以m的值为-6.(2)由(1)知B、D两点坐标分别为B(-2,3),D(-6,1),设BD的解析式为y=px+q,所以6312pq
pq−+=−+=,解得412pq==所以一次函数的解析式为y=12x+4,与x轴的交点为E(-8,0)延长BD交x轴于E,∵∠DBC=∠ABC,BC⊥AC,∴BC垂直平分AC,∴CE=6,∴点A(4,0),将A、B点坐标代入y
=kx+b得2340kbkb+=−+=,解得122kb=−=,所以一次函数的表达式为y=-12x+2.26.(10分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,一定是等角
线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足时,四边形MNPQ是正方形;⑵如图2,已知△ABC中,∠ABC=90°,AB=4,
BC=3,D为平面内一点.②若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.思路分析:(1)①
矩形是对角线相等的四边形;②四边形的中点四边形是平行四边形,等角线四边形的中点四边形是菱形,当对角线AC、BD互相垂直时四边形MNPQ是正方形;⑵①根据题意画出图形,根据图形分析确定DF垂直平分AB,从而计算面积SABED=S△ABD+S△BCD;②如图四边形ABED面积的最大值时点E在直线
AC上,点D是以AE为斜边的等腰直角三角形的直角顶点,进而求得四边形ABED面积的最大值.解:(1)①矩形;②AC⊥BD;⑵①∵∠ABC=90°,AB=4,BC=3,∴BD=AC=5,作DF⊥AB于F,∵AD=BD,∴DF垂直
平分AB,∴BF=2,由勾股定理得DF=21,由题意知SABED=S△ABD+S△BCD=12×AB×DF+12×BC×BF=12×4×21+12×3×2=221+3;②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE为斜边的直角
三角形的直角顶点,所以AE=6,DO=3,在△ABC中,由面积公式得点B到AC的距离为125,所以四边形ABED面积的最大值=S△AED+S△ABE=12×6×3+12×6×125=16.2.27.(10分)如图,在平面直角坐标系xOy中,已知二次函数y=-12x2+bx的图
像过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CP的对称点为B′,当△OCB′为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2BD,点E、F在△OAB的边上,且满足△DOF与△DEF
全等,求点E的坐标.思路分析:(1)将A点坐标代入y=-12x2+bx求得二次函数的表达式;(2)根据题意画出图形,根据图形分析,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,由∠B=90°,根据特殊三角函数值求得BQ的长;(3)按点
F在OB上和点B在OA上进行讨论确定点E的位置,当点F在BA上,点E与点A重合时△DOF与△DEF全等;当F在OA上,DE∥AB时△DOF与△DEF全等,点O关于DF的对称点落在AB上时△DOF与△DEF全等.解:(1)将A(4,0)代入y=-12x2+bx得,-12×42+b×4=0,解得b=
2,所以二次函数的表达式为y=-12x2+2x;(2)根据题意画出图形,二次函数y=-12x2+2x的顶点坐标为B(2,2),与两坐标轴的交点坐标为O(0,0)、A(4,0).此时OB=22,BC=2,若△OCB′为等边三角形
,则∠OCB′=∠QCB′=∠QCB=60°,因为∠B=90°,所以tan∠QCB=QB:CB=3,所以QB=6;(3)①当点F在OB上时,如图,当且仅当DE∥OA,即点E与点A重合时△DOF≌△FED,此时点E的坐标为E(4,0);②点F在OA时,如图DF⊥OA,当OF=
EF时△DOF≌△DEF,由于OD=2BD,所以点D坐标为(43,43),点F坐标为(43,0),点E坐标为(83,0);点F在OA时,如图,点O关于DF的对称点落在AB上时,△DOF≌△DEF,此时OD=DE=2BD=432,BE=236,作BH⊥OA于H,EG⊥OA于G,由相似三角形的性质求
得HG=233,所以点E坐标为(2+233,2-233).综上满足条件的点E的坐标为(4,0)、(83,0)、(2+233,2-233).28.(10分)如图,已知一次函数y=-43x+4的图像是直线l,设直线l分别与y轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点M
在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x轴于点E.直线m过点N分别与y轴、
直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.思路分析:(1)求A、B两点坐标,由勾股定理求得AB的长度;(2)①根据题意画出图形,根据△AOB∽△NHA,△HAN≌△FMA计算出线段FM与OF的长;②分点P位于y轴负半轴上和点P位于y轴
正半轴上两种情况进行分析,借助于相似三角形的对应线段比等于相似比列方程求得交点Q坐标,再将点Q坐标代入AB及NP解析式求得交点P的坐标.解:(1)函数y=-43x+4中,令x=0得y=4,令y=0得,x=3,所以A(0,4),B(3,0).AB=2234+=
5.(2)①由图1知,当⊙N与x轴相切于点E时,作NH⊥y轴于H,则四边形NHOE为矩形,HO=EN=AM=AN,∵∠HAN+∠OAB=90°,∠HNA+∠HAN=90°,∴∠OAB=∠HAN,因为AM⊥AN,所以△AOB∽△NHA,图1∴AHOB=HNAO=ANAB,设AH=3x,则HN=4
x,AN=NE=OH=5x,∵OH=OA+AH,∴3x+4=5x,∴x=2,∴AH=6,HN=8,AN=AM=10.∵AM=AN,∠OAB=∠HAN,∴Rt△HAN≌Rt△FMA,∴FM=6,AF=8,OF=4,∴
M(6,-4).②当点P位于y轴负半轴上时,设直线AN的解析式为y=kx+b,将A(0,4),N(8,10)代入得1048kbb+==,解得341kb==,所以直线AN的解析式为y=34x+4.所以点C坐标为(-163,0),过D作x轴的垂线可得
点D(16,16).设点P坐标为(0,-p),N(8,10)则直线NP解析式为y=108p+x-p,作EF⊥CD于F,CE=163+8=403,AC=320,CD=320+20=803,由相似三角形性质可得EF=8,△CDE∽△APQ,则48083p+=点Q横坐标绝对值,解得点Q的横坐标
绝对值为3410p+(),将点Q横坐标绝对值代入AB及NP解析式得108p+·3410p+()-p=3410p+()·(-43)+4,解得p1=-4(舍去),p2=6,所以P(0,-6).当点P位于y轴正
半轴上时,设点P坐标为(0,4+p),N(8,10),D(16,16)则直线NP解析式为y=68p−x+4+p,△CDE∽△AQP,则40163p=点Q横坐标绝对值,解得点Q的横坐标绝对值为,将点Q横坐标绝对值代
入AB及NP解析式得68p−·(-65p)+4+p=(-65p)·(-43)+4,解得p=10,所以P(0,14).法二:把M(6,-4),D(16,16)代入y=kx+b得161664kbkb+=+=−,解得162kb=−=,∴直
线MD的解析式为y=2x-16,当x=8时,y=0,点E(8,0)在直线DE上。①当P位于y轴负半轴上时,△CDE∽△APQ,则∠7=∠5,∠4=∠6,∵ND=NE=r,∴∠1=∠6,∵OA∥NE,∴∠2=∠4,∴∠2=∠1,∴NP∥ND,∴∠3=∠6,∴∠3=∠4,∴AN
=NP=10,∵OA=4,∴OP=6,∴点P坐标为(0,-6)②当P位于y轴正半轴上时,△CDE∽△AQP,则∠1=∠2=∠3,∠APQ=∠CED,∴∠5=∠6,∵ND=NE=r,∴∠4=∠7,∠8=∠Q=90°,∠8=∠9,∠E=∠Q∴∠9+∠4=90°,∴
NQ⊥DE,∴∠9=∠6,∴∠5=∠8,∴AN=NP=10,∵OA=4,∴OP=14,∴点P坐标为(0,14)获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com