【文档说明】《历年高考数学真题试卷》2021年全国高考甲卷数学(文)试题(解析版).docx,共(10)页,1.136 MB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-36ac9149b8c6966bad06a6690797e187.html
以下为本文档部分文字说明:
绝密★启用前2021年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,用皮擦干净
后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合
1,3,5,7,9,27MNxx==,则MN=()A.7,9B.5,7,9C.3,5,7,9D.1,3,5,7,9【答案】B【解析】【分析】求出集合N后可求MN.【详解】7,2N=+,故5,
7,9MN=,故选:B.2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户
比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,
也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A正确;该
地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+==,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++==,故D正确;该地农户家庭年收入的平均值的估计值
为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68+++++++++++=(万元),超过6.5万元,故C错误.综上
,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于频
率组距组距.3.已知2(1)32izi−=+,则z=()A.312i−−B.312i−+C.32i−+D.32i−−【答案】B【解析】【分析】由已知得322izi+=−,根据复数除法运算法则,即可求解.【详解】2(1)232izizi−=−=+,32(32)23312222ii
iiziiii++−+====−+−−.故选:B.4.下列函数中是增函数的为()A.()fxx=−B.()23xfx=C.()2fxx=D.()3fxx=【答案】D【解析】【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,()fxx=−为R上的减函数,
不合题意,舍.对于B,()23xfx=为R上的减函数,不合题意,舍.对于C,()2fxx=在(),0−为减函数,不合题意,舍.对于D,()3fxx=为R上的增函数,符合题意,故选:D.5.点()3,0到双曲线2211
69xy−=的一条渐近线的距离为()A.95B.85C.65D.45【答案】A【解析】【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可.【详解】由题意可知,双曲线的渐近线方程为:220169xy−=,即340=xy,结合对称性,不妨考虑点()3,
0到直线340xy+=的距离:9095916d+==+.故选:A.6.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足5lgLV=+.已知某同学视力的五分记录法的数据为4.9,则
其视力的小数记录法的数据为()(10101.259)A.1.5B.1.2C.0.8D.0.6【答案】C【解析】【分析】根据,LV关系,当4.9L=时,求出lgV,再用指数表示V,即可求解.【详解】由5lgLV=+,当4.9L=时,lg0.1V=−,则10.110101110100.81.259
10V−−===.故选:C.7.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥AEFG−后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.【答案】D【解析】【分析】根据题意及题目所给的
正视图还原出几何体的直观图,结合直观图进行判断.【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D8.在ABC中,已知120B=,19AC=,2AB=,则BC=()A.1B.2C.5D.3【答案】D【解析】【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.
【详解】设,,ABcACbBCa===,结合余弦定理:2222cosbacacB=+−可得:21942cos120aa=+−,即:22150aa+−=,解得:3a=(5a=−舍去),故3BC=.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;
(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.9.记nS为等比数列na的前n项和.若24S=,46S=,则6S=()A.7B.8C.9D.10【答案】A【解析】【分析】根据题
目条件可得2S,42SS−,64SS−成等比数列,从而求出641SS−=,进一步求出答案.【详解】∵nS为等比数列na的前n项和,∴2S,42SS−,64SS−成等比数列∴24S=,42642SS−=−
=∴641SS−=,∴641167SS=+=+=.故选:A.10.将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.8【答案】C【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:001
11,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,
11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.11.若cos0,,tan222sin=−,则tan=()A.1515B.55C.53D.153【答案】A【解析】【分析】由二倍角公式可得
2sin22sincostan2cos212sin==−,再结合已知可求得1sin4=,利用同角三角函数的基本关系即可求解.【详解】costan22sin=−2sin22sincoscostan2
cos212sin2sin===−−,0,2,cos0,22sin112sin2sin=−−,解得1sin4=,215cos1sin4=−=,sin15tan
cos15==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin.12.设()fx是定义域为R的奇函数,且()()1fxfx+=−.若1133f−=,则53f=()A.53−B.13−C.13D.
53【答案】C【解析】【分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f的值.【详解】由题意可得:522213333ffff=+=−=−,而21111133333ffff=−==−−=−
,故5133f=.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分.13.若向量,ab满足3,5,1aabab=−==,则b=_________.【答案】32
【解析】【分析】根据题目条件,利用ab−模的平方可以得出答案【详解】∵5ab−=∴222229225abababb−=+−=+−=∴32b=r.故答案为:32.14.已知一个圆锥的底面半径为6,其体积为30则该圆锥的侧面积为________.【答案】39【解析】【分析】利用体积公
式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303Vh==∴52h=∴2222513622lhr=+=+=∴136392Srl===侧.故答案为:39.15.已知函数()()2c
osfxx=+的部分图像如图所示,则2f=_______________.【答案】3−【解析】【分析】首先确定函数的解析式,然后求解2f的值即可.【详解】由题意可得:31332,,241234TTT
=−====,当1312x=时,()131322,2126xkkkZ+=+==−,令1k=可得:6=−,据此有:()52cos2,2cos22cos362266fxxf=−=−==−
.故答案为:3−.【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2T即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐
标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.16.已知12,FF
为椭圆C:221164xy+=的两个焦点,P,Q为C上关于坐标原点对称的两点,且12PQFF=,则四边形12PFQF的面积为________.【答案】8【解析】【分析】根据已知可得12PFPF⊥,设12||,||PFmPFn==,利用勾股定理结合8mn+=,求出mn,四边形12PFQF面积
等于mn,即可求解.【详解】因为,PQ为C上关于坐标原点对称的两点,且12||||PQFF=,所以四边形12PFQF为矩形,设12||,||PFmPFn==,则228,48mnmn+=+=,所以22264()2482mnmmnnmn=+=++=+,8mn=,即四边形12PFQF面积等于8.故答
案为:8.三、解答题:共70分.解答应写出交字说明、证明过程程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两台机床生产同种产品,产品按质量分为一级品和
二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分
别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()nadbcKabcdacbd−=++++()2PKk0.0500.0100.001k3.8416.63510.828【答案】(1)75%;60%;(2)能.【解析】【
分析】根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075%200=,乙机床生产的产品中的一级品的频率为12060%200=.(2)()224001508012050400106.6352
7013020020039K−==,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.18.记nS为数列na的前n项和,已知210,3naaa=,且数列nS是等差数列,证明:na是等差数列.【答案】证明见解析.【解析】【分
析】先根据21SS−求出数列nS的公差d,进一步写出nS的通项,从而求出na的通项公式,最终得证.【详解】∵数列nS是等差数列,设公差为d212111aaaaSS+=−=−=∴111(1)nSanaan=+−=,()nN∴12nSan=,()nN∴当2n时,()2211
11112nnnaSSananana−=−=−−=−当1n=时,11121=aaa−,满足112naana=−,∴na的通项公式为112naana=−,()nN∴()()111111221=2nnaaanaanaa−−=−−−−∴na是等差数列.【点睛】在利用1nnnaS
S−=−求通项公式时一定要讨论1n=的特殊情况.19.已知直三棱柱111ABCABC−中,侧面11AABB为正方形,2ABBC==,E,F分别为AC和1CC的中点,11BFAB⊥.(1)求三棱锥FEBC−的体积;(2)已知D为棱11
AB上的点,证明:BFDE⊥.【答案】(1)13;(2)证明见解析.【解析】【分析】(1)首先求得AC的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)如图所示,连结AF,由题意可得:22
415BFBCCF=+=+=,由于AB⊥BB1,BC⊥AB,1BBBCB=,故AB⊥平面11BCCB,而BF平面11BCCB,故ABBF⊥,从而有22453AFABBF=+=+=,从而229122ACAFC
F=−=−=,则222,ABBCACABBC+=⊥,ABC为等腰直角三角形,111221222BCEABCSs===△△,11111333FEBCBCEVSCF−===△.(2)由(1)的结论可将几何体补形为一个棱
长为2的正方体1111ABCMABCM−,如图所示,取棱,AMBC的中点,HG,连结11,,AHHGGB,正方形11BCCB中,,GF为中点,则1BFBG⊥,又111111,BFABABBGB⊥=,故BF⊥平面11ABGH,而DE平面11ABGH,从而BF⊥DE.【点睛】求三棱锥的体积时要
注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.20.设函数22()3ln1fxaxaxx=+−+,其中0a.(1)讨论()fx的单调性;(2)若()yfx
=的图象与x轴没有公共点,求a的取值范围.【答案】(1)()fx的减区间为10,a,增区间为1,+a;(2)1ae.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根
据()10f及(1)的单调性性可得()min0fx,从而可求a的取值范围.【详解】(1)函数的定义域为()0,+,又()23(1)()axaxfxx+−=,因为0,0ax,故230ax+,当10xa时,()0fx;当1xa时,()0fx;所以()fx的减区间为10
,a,增区间为1,+a.(2)因为()2110faa=++且()yfx=的图与x轴没有公共点,所以()yfx=的图象在x轴的上方,由(1)中函数的单调性可得()min1133ln33lnfxfaaa==−=+,故33ln0a
+即1ae.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.21.抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:1x=交C于P,Q两点,且OPOQ⊥.已知点()
2,0M,且M与l相切.(1)求C,M的方程;(2)设123,,AAA是C上的三个点,直线12AA,13AA均与M相切.判断直线23AA与M的位置关系,并说明理由.【答案】(1)抛物线2:Cyx=,M方程为22(2)1xy−+=;(2)相切,理由见解析【解析】【分析】(1)根据已知抛物线与1x=相
交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,PQ坐标,由OPOQ⊥,即可求出p;由圆M与直线1x=相切,求出半径,即可得出结论;(2)先考虑12AA斜率不存在,根据对称性,即可得出结论;若121323,,AAAAAA斜率
存在,由123,,AAA三点在抛物线上,将直线121223,,AAAAAA斜率分别用纵坐标表示,再由1212,AAAA与圆M相切,得出2323,yyyy+与1y的关系,最后求出M点到直线23AA的距离,即可得出结论.【
详解】(1)依题意设抛物线200:2(0),(1,),(1,)CypxpPyQy=−,20,1120,21OPOQOPOQypp⊥=−=−==,所以抛物线C的方程为2yx=,(0,2),MM与1x=相切,所以半径为1,所以M的方程为22(
2)1xy−+=;(2)设111222333(),(,),(,)AxyAxyAxy若12AA斜率不存在,则12AA方程为1x=或3x=,若12AA方程为1x=,根据对称性不妨设1(1,1)A,则过1A与圆M相切的另一条直线方程为1y=,此时该直线与抛物线只有一个交点,即不存在3
A,不合题意;若12AA方程为3x=,根据对称性不妨设12(3,3),(3,3),AA−则过1A与圆M相切的直线13AA为33(3)3yx−=−,又1313313133113,033AAyykyxxyyy−=====−++,330,(0,0)xA=,此时直线1323
,AAAA关于x轴对称,所以直线23AA与圆M相切;若直线121323,,AAAAAA斜率均存在,则121323121323111,,AAAAAAkkkyyyyyy===+++,所以直线12AA方程为()11
121yyxxyy−=−+,整理得1212()0xyyyyy−++=,同理直线13AA的方程为1313()0xyyyyy−++=,直线23AA的方程为2323()0xyyyyy−++=,12AA与圆M相切,12212|2|11()yyyy+=++整理得22212121(1)
230yyyyy−++−=,13AA与圆M相切,同理22213131(1)230yyyyy−++−=所以23,yy为方程222111(1)230yyyyy−++−=的两根,2112323221123,11yyyyyyyy−+=−=−−,M到直线23AA的
距离为:21223122123213|2||2|121()1()1yyyyyyyy−++−=+++−−22112222111|1|111(1)4yyyyy++===+−+,所以直线23AA与圆M相切;综上若直线1213,AAAA与圆M相切,则直线23AA与圆M相切.
【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,AAAA的对称性,抽象出2323,yyyy+与1y关系,把23,yy的关系转化为用1y表示.(二)选考题:共10分
.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为22cos=.(1)将C的极坐标方程化为直
角坐标方程;(2)设点A的直角坐标为()1,0,M为C上的动点,点P满足2APAM=,写出Р的轨迹1C的参数方程,并判断C与1C是否有公共点.【答案】(1)()2222xy−+=;(2)P的轨迹1C的参数方程为322cos2sinxy=−+=(为参数),C与1C没有公
共点.【解析】【分析】(1)将曲线C的极坐标方程化为222cos=,将cos,sinxy==代入可得;(2)设(),Pxy,设()22cos,2sinM+,根据向量关系即可求得P的轨迹1C的参数方程
,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C的极坐标方程22cos=可得222cos=,将cos,sinxy==代入可得2222xyx+=,即()2222xy−+=,即
曲线C的直角坐标方程为()2222xy−+=;(2)设(),Pxy,设()22cos,2sinM+2APAM=,()()()1,222cos1,2sin22cos2,2sinxy−=+−=+−,则122cos22sinxy−=+−
=,即322cos2sinxy=−+=,故P的轨迹1C的参数方程为322cos2sinxy=−+=(为参数)曲线C的圆心为()2,0,半径为2,曲线1C的圆心为()32,0−,半径为2,则圆心距为322−,3222
2−−,两圆内含,故曲线C与1C没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出M的参数坐标,利用向量关系求解.[选修4-5:不等式选讲]23.已知函数()2,()2321fxxgxxx=−=+−−.(1)画
出()yfx=和()ygx=的图像;(2)若()()fxagx+,求a的取值范围.【答案】(1)图像见解析;(2)112a【解析】【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()yf
x=向左平移可满足同角,求得()yfxa=+过1,42A时a的值可求.【详解】(1)可得2,2()22,2xxfxxxx−=−=−,画出图像如下:34,231()232142,2214,2xgxxxxxx−
−=+−−=+−,画出函数图像如下:(2)()|2|fxaxa+=+−,如图,在同一个坐标系里画出()(),fxgx图像,()yfxa=+是()yfx=平移了a个单位得到,则要使()()fx
agx+,需将()yfx=向左平移,即0a,当()yfxa=+过1,42A时,1|2|42a+−=,解得112a=或52−(舍去),则数形结合可得需至少将()yfx=向左平移112个单位,11
2a.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.