【文档说明】辽宁省鞍山市2022届普通高中高三下学期第二次质量监测数学试题答案.pdf,共(5)页,447.501 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-2b1d0aa855d9fba1afcf6b1df4bd17f7.html
以下为本文档部分文字说明:
答案第1页共4页参考答案及评分标准1.A2.D3.B4.B5.B6.C7.D8.C9.BD10.AB11.ACD12.ABC13.12i+14.1−15.√32𝜋16.𝑥24+𝑦23=1(𝑥𝑦≠0)17.解(1)𝑓(𝑥)=−√32𝑠𝑖𝑛
𝑥−12𝑐𝑜𝑠𝑥=−𝑠𝑖𝑛(𝑥+𝜋6)··································2分令−𝜋2+2𝑘𝜋≤𝑥+𝜋6≤𝜋2+2𝑘𝜋,则−2𝜋3+2𝑘𝜋≤𝑥≤𝜋3+2𝑘𝜋,𝑘∈𝑍
所以,单调减区间是[−2𝜋3+2𝑘𝜋,𝜋3+2𝑘𝜋],𝑘∈𝑍.·····································5分(2)由𝑎2−𝑏2=𝑎𝑐⋅𝑎2+𝑐2−𝑏22𝑎𝑐−12𝑏𝑐得:𝑏2+𝑐2−𝑎2=𝑏𝑐,即𝑐𝑜𝑠
𝐴=𝑏2+𝑐2−𝑎22𝑏𝑐=12,由于0<𝐴<𝜋,所以𝐴=𝜋3.································································7分在△𝐴𝐵𝐶中,0<𝐵
<2π3,𝑓(𝐵)=−𝑠𝑖𝑛(𝐵+𝜋6),于是𝜋6<𝐵+𝜋6<5𝜋6,则12<𝑠𝑖𝑛(𝐵+𝜋6)≤1,−1≤−𝑠𝑖𝑛(𝐵+𝜋6)<−12,所以−1≤𝑓(𝐵)<−12.················
·······················································10分18.(1)解:若选①:∵𝑆𝑛=2𝑛−3𝑛−1,当𝑛≥2时,𝑎𝑛=𝑆𝑛−𝑆𝑛−1=2𝑛−3𝑛−1−[2𝑛−1−3(�
�−1)−1]=2𝑛−1−3,当𝑛=1时,𝑎1=𝑆1=−2满足上式,故𝑎𝑛=2𝑛−1−3.·····························6分若选②:𝑎𝑛+1=2𝑎𝑛+
3,𝑎1=−2,易得𝑎𝑛+1+3=2(𝑎𝑛+3),于是数列{𝑎𝑛+3}是以𝑎1+3=1为首项,2为公比的等比数列,∴𝑎𝑛+3=2𝑛−1,∴𝑎𝑛=2𝑛−1−3.··························
····························6分(2)由(1)得𝑏𝑛=𝑛⋅2𝑛−1,从而𝑇𝑛=1×20+2×21+3×22+⋯+𝑛⋅2𝑛−1,12321222322nnTn=++++,作差得−𝑇𝑛=2
0+21+22+⋯+2𝑛−1−𝑛⋅2𝑛=1−2𝑛1−2−𝑛⋅2𝑛=(1−𝑛)2𝑛−1,于是𝑇𝑛=(𝑛−1)2𝑛+1.·········································
····························12分19.(1)证明:在梯形𝐴𝐵𝐶𝐷中,𝐴𝐵//𝐶𝐷,1ADCDBC===,故梯形𝐴𝐵𝐶𝐷为等腰梯形,因为23BCD=,则∠𝐴
𝐷𝐶=2𝜋3,所以,∠𝐵𝐴𝐶=∠𝐴𝐶𝐷=𝜋6,又因为∠𝐴𝐵𝐶=𝜋−∠𝐵𝐶𝐷=𝜋3,则∠𝐴𝐶𝐵=𝜋−∠𝐴𝐵𝐶−∠𝐵𝐴𝐶=𝜋2,∴𝐴𝐶⊥𝐵𝐶,答案第2页共4页因为𝐶𝐹⊥平面𝐴𝐵𝐶𝐷,𝐴𝐶⊂平面𝐴�
�𝐶𝐷,∴𝐴𝐶⊥𝐶𝐹,∵𝐵𝐶∩𝐶𝐹=𝐶,∴𝐴𝐶⊥平面𝐵𝐶𝐹,因为四边形𝐴𝐶𝐹𝐸为矩形,则𝐴𝐶//𝐸𝐹,因此,𝐸𝐹⊥平面𝐵𝐶𝐹.······················6分
(2)解:因为𝐶𝐹⊥平面𝐴𝐵𝐶𝐷,𝐴𝐶⊥𝐵𝐶,以点𝐶为坐标原点,𝐶𝐴、𝐶𝐵、𝐶𝐹所在直线分别为𝑥、𝑦、𝑧轴建立如下图所示的空间直角坐标系,在Rt∆ABC中,AC=BCtanπ6=√3,···········
··········8分则𝐴(√3,0,0)、𝐵(0,1,0)、𝐶(0,0,0)、𝐸(0,0,1)、𝐹(√3,0,1),设点𝑀(𝑡,0,1),其中0≤𝑡≤√3,设平面𝑀𝐴𝐵的法向量为(),,mxyz=,𝐴𝐵⃗⃗⃗⃗⃗=(−√3,1,0),𝐴𝑀⃗⃗⃗⃗
⃗⃗=(𝑡−√3,0,1),由{𝑚→⋅𝐴𝐵→=√3𝑥−𝑦=0𝑚→⋅𝐴𝑀→=(𝑡−√3)𝑥+𝑧=0,取𝑥=1,可得𝑚⃗⃗=(1,√3,√3−𝑡),··········10分易知平面FCB的一个法向量为𝑛⃗=(1,
0,0),|𝑐𝑜𝑠<𝑚⃗⃗,𝑛⃗>|=|𝑚⃗⃗⃗⋅𝑛⃗||𝑚⃗⃗⃗|⋅|𝑛⃗|=1√4+(𝑡−√3)2,所以,当𝑡=0,即M与F重合时,|𝑐𝑜𝑠<𝑚⃗⃗,𝑛⃗>|取最小值,此时平面𝑀𝐴𝐵与平面FCB所成锐二面角最大,此时,平面𝑀𝐴𝐵与平面
FCB所成锐二面角的余弦值为√77.·····12分20.(1)解:由题可得()11234535x=++++=,2234435y++++==,····························································
·········2分5151iiixy==,522222211234555iix==++++=.则51522150.65iiiiixyxybxx==−==−,·································
··································4分30.631.2aybx=−=−=所以0.61.2yx=+································································
··············6分(2)解:由题可知X的所有可能取值为0,1,2,3,2123353(1)10CCPXC===,12233563(2)105CCPXC====,0323351(3)10CCPXC===则X的分布列为答案第3页共4页X123P31
0351109()5EX=······················································································12分21.(1)依题意,𝐹1(−1,0),�
�2(1,0),|𝑃𝐹1|=|𝑃𝐹2|=√2,由椭圆定义知:椭圆长轴长2𝑎=|𝑃𝐹1|+|𝑃𝐹2|=2√2,即𝑎=√2,而半焦距𝑐=1,即有短半轴长𝑏=1,所以椭圆C的标准方程为:2212xy+=.············
····································4分(2)依题意,设直线l方程为𝑥=𝑚𝑦+1,由{𝑥=𝑚𝑦+1𝑥2+2𝑦2=2消去x并整理得22(2)210mymy++−=,设𝑀(𝑥1,𝑦1),𝑁
(𝑥2,𝑦2),则𝑦1+𝑦2=−2𝑚𝑚2+2,𝑦1𝑦2=−1𝑚2+2,···················6分假设存在点𝑇(𝑡,0),直线TM与TN的斜率分别为𝑘𝑇𝑀=𝑦1𝑥1−𝑡=𝑦1𝑚𝑦1+1−𝑡,𝑘𝑇𝑁=𝑦2𝑥2−𝑡=𝑦2𝑚�
�2+1−𝑡,𝑘𝑇𝑀⋅𝑘𝑇𝑁=𝑦1𝑦2(𝑚𝑦1+1−𝑡)(𝑚𝑦2+1−𝑡)=𝑦1𝑦2𝑚2𝑦1𝑦2+𝑚(1−𝑡)(𝑦1+𝑦2)+(1−𝑡)2=−1𝑚2+2𝑚2(−1𝑚2+2)+𝑚(1−𝑡)(
−2𝑚𝑚2+2)+(1−𝑡)2=−1[−1−2(1−𝑡)+(1−𝑡)2]𝑚2+2(1−𝑡)2,要使𝑘𝑇𝑀⋅𝑘𝑇𝑁为定值,必有−1−2(1−𝑡)+(1−𝑡)2=0,即𝑡=±√2,·······10分当𝑡=√2时,∀𝑚
∈𝑹,𝑘𝑇𝑀⋅𝑘𝑇𝑁=−12(1−√2)2=−32−√2,当2t=−时,∀𝑚∈𝑹,𝑘𝑇𝑀⋅𝑘𝑇𝑁=−12(1+√2)2=√2−32,所以存在点𝑇(±√2,0),使得直线TM与TN的斜
率之积为定值.·················12分22.(1)因为𝑔(𝑥)=𝑥2−(𝑎+2)𝑥+𝑓(𝑥)=𝑥2−(𝑎+2)𝑥+𝑎𝑙𝑛𝑥,所以𝑔′(𝑥)=2𝑥−(𝑎+2)+𝑎𝑥=2𝑥2−(𝑎+2)𝑥+𝑎𝑥=2(𝑥−1)(𝑥−𝑎2)𝑥,令�
�′(𝑥)=0,得𝑥1=1或𝑥2=𝑎2>1.所以𝑔′(𝑥)>0时,0<𝑥<1或2ax;𝑔′(𝑥)<0时,1<𝑥<𝑎2.所以𝑔(𝑥)在(0,1)和(𝑎2,+∞)上单调递增;在(1,𝑎2)上单调递减
.·······················4分答案第4页共4页(2)因为ℎ(𝑥)=𝑎𝑙𝑛𝑥−𝑥2,所以ℎ′(𝑥)=𝑎𝑥−2𝑥=𝑎−2𝑥2𝑥.当𝑎≤0时,ℎ′(𝑥)=𝑎−2𝑥2𝑥<0,可得ℎ(𝑥)在(0,+∞)上单调递减,此时ℎ
(𝑥)不可能存在两个不同的零点,不符合题意.····································································6分当𝑎>0时,ℎ′(𝑥)=𝑎−2𝑥2𝑥=−2(𝑥−
√𝑎2)(𝑥+√𝑎2)𝑥.令ℎ′(𝑥)=0,得𝑥=√𝑎2.当ℎ′(𝑥)>0时,0<𝑥<√𝑎2;当ℎ′(𝑥)<0时,𝑥>√𝑎2.所以ℎ(𝑥)在(0,√𝑎2)上单调递增,在(√𝑎2,+∞)上单调递减.而当𝑥=𝑒1𝑎时,ℎ(
𝑒1𝑎)=1−(𝑒1𝑎)2<0,𝑥=𝑒𝑎时,ℎ(𝑒𝑎)=𝑎2−(𝑒𝑎)2<0,(𝑒𝑎>𝑎).所以要使ℎ(𝑥)存在两个不同的零点𝑥1,𝑥2,则ℎ(𝑥)极大值=ℎ(√𝑎2)=𝑎𝑙𝑛√𝑎2−𝑎2=�
�2(𝑙𝑛𝑎2−1)>0,即𝑙𝑛𝑎2−1>0,解得𝑎>2𝑒.·······························································8分因为ℎ(𝑥)存在两个不同的零点𝑥1,�
�2,则𝑎𝑙𝑛𝑥1−𝑥12=𝑎𝑙𝑛𝑥2−𝑥22,即𝑎(𝑙𝑛𝑥1−𝑙𝑛𝑥2)=𝑥12−𝑥22.不妨设𝑥1>𝑥2>0,则𝑙𝑛𝑥1−𝑙𝑛𝑥2>0,则𝑎=𝑥12−𝑥22𝑙𝑛𝑥1−𝑙𝑛𝑥2,要证𝑎<𝑥12+𝑥22,即证
𝑥12−𝑥22𝑙𝑛𝑥1−𝑙𝑛𝑥2<𝑥12+𝑥22,即证𝑙𝑛𝑥1−𝑙𝑛𝑥2>𝑥12−𝑥22𝑥12+𝑥22,即𝑙𝑛𝑥1𝑥2>𝑥12𝑥22−1𝑥12𝑥22+1,设𝑡=𝑥1𝑥2>1.即证𝑙𝑛𝑡>𝑡2−1𝑡2+1(�
�>1),·······························10分令221()ln(1)1thtttt−=−+,则ℎ′(𝑡)=1𝑡−4𝑡(𝑡2+1)2=(𝑡2−1)2𝑡(𝑡2+1)2>0,所以ℎ(𝑡)在(1,)+上单调
递增,所以ℎ(𝑡)>ℎ(1)=0,即𝑙𝑛𝑡>𝑡2−1𝑡2+1,所以𝑎<𝑥12+𝑥22成立.综上有2𝑒<𝑎<𝑥12+𝑥22.························································
·············12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com