【文档说明】精品解析:广东省深圳中学2022-2023学年高三上学期第一次阶段测试物理试题(解析版).docx,共(20)页,3.217 MB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-1e806b3559e3ee827dfdd0389f70ee67.html
以下为本文档部分文字说明:
2022-2023学年深圳中学高三年级第一次阶段测试物理一、单选题1.安徽宿松籍科学家吴宜灿获2018年欧洲聚变核能创新奖.物理学史上许多物理学家的科学研究推动了人类文明的进程.关于科学家的贡献,下列说法正确的是()A.亚里士多德认为,必须有
力作用在物体上,物体的运动状态才会改变B.胡克用逻辑推理的方法得出了弹簧的伸长与外力的关系C.牛顿做了著名的斜面实验,得出轻重物体自由下落一样快的结论D.伽利略通过“理想实验”得出结论:运动物体必具有一定速度,如果它不受力,它将以这一速度永远运动
下去【答案】D【解析】【分析】根据物理学史和常识解答,记住著名物理学家的主要贡献即可.【详解】亚里土多德认为,必须有力作用在物体上物体才能运动,故A错误;胡克用实验的方法得出了弹簧的伸长与外力的关系,故B错误;伽利略做了著名的斜面实验,得出轻重物体自由下落一样快的结论,故C
错误;伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力它将以这一速度永远运动下去,故D正确.所以D正确,ABC错误.【点睛】本题考查物理学史,是常识性问题,对于物理学上重大发现、发明、著名理论要加强记忆.2.如图所示,在一端封闭的的光滑细玻璃管管中注满清水,水中放一个
蜡块块,蜡块块在匀速上浮的的同时,玻璃管沿水平方向做匀加速直线运动,以初始位置为坐标坐标原点,蜡块的运动轨迹可能为()A.直线OaB.曲线ObC.曲线OcD.曲线Od【答案】B【解析】【详解】小圆柱在竖直方向
为匀速运动,水平方向为匀加速直线运动,则可知合力沿x轴正方向,可知图象为向右弯曲的抛物线Ob,故B正确,ACD错误。故选B。3.如图所示,一小球从A点以初速度0v水平抛出,在平抛运动过程中与竖直挡板在B点发生碰撞
,最终落在C点。已知碰撞的瞬间竖直方向速度的大小和方向都不变,水平方向速度的大小不变而方向反向,若仅增大平抛初速度0v,则()A.小球与挡板碰撞的点将在B点的下方B.小球的落地点将在C点的左边C.在整个运动过程中重力对小球做
功增多D.小球落地时重力做功的瞬时功率增大【答案】B【解析】【分析】【详解】A.当平抛起点与竖直挡板的水平距离一定时,初速度越大,打到挡板上的时间越短,竖直位移越小,故与挡板碰撞的点将在B上方,故A错误;B.依题意,小球与挡板碰撞的过程只是改变了水平方向的运动,没有改变平抛运动的轨迹特征
,相当于把与挡板碰撞后的运动轨迹由右边转到左边,故平抛初速度越大,水平位移越大,小球将落在C点的左边,故B正确;CD.因为竖直总高度不变,所以小球下落到地面所用时间t不变,故重力做功的情况不变,小球落地时重力做功的瞬时功率2GyPmgvmgt==不变,故CD均错误。故选B。4.如图所示,一水
平的浅色长传送带上放置一质量为m的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a开始运动,当其速度达到v后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留了一段黑色痕迹后,相对于传送带不再滑动,关于上述过程,以下判断正确
的是(重力加速度大小为g)()A.μ与a之间一定满足关系agB.煤块从开始运动到相对传送带静止通过的位移为2vgC.煤块从开始运动到相对传送带静止经历的时间为vgD.黑色痕迹的长度为()222agva
−【答案】C【解析】分析】【详解】A.由题意知煤块与传送带之间发生相对滑动,则传送带的加速度大于煤块的加速度,有μmg<ma解得μ<ag所以A错误;B.设煤块的加速度大小为a1,对煤块由牛顿第二定律有μmg=ma1解得a1=μg由匀变速直线运动规律得,煤块从开始运动到相对传送带静止
的过程中通过的位移221122vvxag==所以B错误;【C.煤块从开始运动到相对传送带静止经历的时间t1=1vvag=所以C正确;D.传送带从开始运动到速度为v经历的时间t2=va传送带在从开始运动到速度为v的过程中通过的位移x2=22va则传送带在从速度为v到与
煤块相对静止的过程中,做匀速运动的位移x3=v(t1-t2)=22vvga−所以黑色痕迹的长度Δx=x2+x3-x1=2222vvga−所以D错误;故选C。5.汽车A和汽车B(均可视为质点)在平直的公路上沿两平行车道同向行驶,A车在后(如图甲所示),以某时刻作为计时起点,此时两车相距x0=
12m,汽车A运动的xt−图象如图乙所示,汽车B运动的vt−图象如图丙所示。则下列说法正确的是()A.两车相遇前,在t=2s时,两车相距最远,且最远距离为16mB.在0~6s内,B车的位移为16mC.在
t=8s时,两车相遇D.若t=1s时,A车紧急制动(视为匀减速直线运动),要使A车追不上B车,则A车的加速度大小应大于21m/s4【答案】D【解析】【详解】A.当两车速度相等时,两车相距最远,由图乙可得A20m/s4m/s5xvt===由图丙,可得B车1~5s的加速度2208
m/s2m/s51vat−===−−设匀减速运动的时间为t时速度相等,则有ABvvat=+代入数据解得2s=t即在3s时二者相距最远,此时AA43m12mxvt===B车位移2B181m82m(2)2m20m2x=++−=则两车最
远距离B0A20mxxxx=+−=A错误;B.B车在06s−内的位移等于在05s−内的位移,由图像围成面积表示位移可得1(15)8m24m2x=+=B错误;C.8st=时,A车位移AA48m32mxvt===
B车的位移等于在05s−内的位移,为24mx=有0Axxx+所以两车不相遇,C错误;D.1st=时,A匀速位移AA41m4mxvt===B车匀速位移BB81m8mxvt===两车间距离8m12m4m16mx=+−=B车匀减速到停止的位移B8(51)m16
m2x=−=当A停止时位移等于B车,A的加速度最小,A车匀减速运动的总位移BA16m16m32mxxx=+=+=总对A车,根据速度位移公式22A2AA41mm/s22324vax===总所以A车的加
速度至少为21m/s4,D正确。故选D。6.如图所示,一质量为M的人站在台秤上,台秤的示数表示人对秤盘的压力;一根长为R的细线一端系一个质量为m的小球,手拿细线另一端,小球绕细线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆
轨道最高点,则下列说法正确的是()A.小球运动到最高点时,小球的速度为零B.当小球运动到最高点时,台秤的示数最小,且为MgC.小球在a、b、c三个位置时,台秤的示数相同D.小球从c点运动到最低点的过程中台秤的示数增大,人处于超重状态的【答案】C【解析】
【分析】【详解】A.小球恰好能通过圆轨道最高点,在最高点,细线中拉力为零,小球速度bvgR=,A错误;B.当小球运动到最高点时,细线中拉力为零,台秤的示数为Mg,但不是最小,B错误;C.小球在a、b、c
三个位置时,小球竖直方向都只受重力,小球均处于完全失重状态,台秤的示数相同,C正确;D.小球从c点运动到最低点的过程中ya增加,方向向上,球处于超重状态,台秤的示数增大,人处于静止状态,不会有超重失重状态,D错误。故选C。7.如图所示,固定在水平面上一个光滑的
半圆弧轨道,O点为半圆弧的圆心,一根轻绳跨过半圆弧的A点(O、A等高,不计A处摩擦),轻绳一端系在竖直杆上的B点,另一端连接质量为m的小球P。现将另一个小球Q用光滑轻质挂钩挂在轻绳上的AB之间,已知整个装置处于静止状态时,30=,45=,重力加速度为g,则()A.小
球Q的质量为2mB.半圆弧轨道对小球P的支持力为33mgC.B点缓慢向上移动微小距离,绳子拉力减小D.静止时剪断A处轻绳的瞬间,小球P的加速度为32g【答案】B【解析】【分析】【详解】A.分别对两个小球做受力分析,因为是活结,所以绳子张力大小都相同,则2cos
2cospQmgmg=由两式可得32PQmm=选项A错误;B.对小球P受力分析,可知半圆弧轨道对小球P的支持力为33mg选项B正确;C.绳子B端向上移动一小段距离,根据受力分析可知P球没有发生位移,绳长不会变化,角度不会发生变化,即绳子的张力也不会变化,选项C错误;D.剪断A处细绳,拉力
突变为零,小球P所受合力为重力沿圆弧切线方向的分力,所以加速度为12g,选项D错误。故选B。二、多选题8.2020年11月24日,中国长征五号遥五运载火箭在文昌卫星发射中心起飞,把嫦娥五号探测器送入地月转移
轨道。“嫦娥五号”飞船经过地月转移轨道的P点时实施一次近月调控后进入圆形轨道Ⅰ,再经过系列调控使之进入准备“落月”的椭圆轨道Ⅱ,最终实现首次月面自动采样封装。若绕月运行时只考虑月球引力作用,下列关于“嫦娥五
号”探测器的说法正确的是()A.经过轨道Ⅱ近月点的速度大于11.2km/sB.从轨道Ⅰ经过P点时必须进行减速才能进入轨道ⅡC.沿轨道Ⅰ和Ⅱ运行到P点的加速度相等D.沿轨道Ⅰ和Ⅱ运行的周期相同的【答案】BC【解析】【
分析】【详解】A.以探测器的运动速度无法脱离地球引力而飞向宇宙,其速度不可能大于第二宇宙速度,故A错误;B.从轨道Ⅰ经过P点时进入轨道Ⅱ,是一个向心运动的过程,需要减速,故B正确;C.沿轨道Ⅰ和Ⅱ运行到P点时,探测器只受月球引力作用,根据牛顿第二定律,加速度相等,
故C正确;D.轨道Ⅰ的半径大于轨道Ⅱ的半长轴,根据开普勒第三定律,其运行周期不同,故D错误。故选BC。9.如图甲所示,A、B两个物体靠在一起,静止在光滑的水平面上,它们的质量分别为A1kgm=,B3kgm=,现用水平力AF推A,用水平力BF拉B,AF和B
F随时间t变化关系如图乙所示,则()A.A、B脱离之前,A物体所受的合外力逐渐减小B.2s=t时,A、B脱离C.A、B脱离前,它们一起运动的位移为6mD.A、B脱离后,A做减速运动,B做加速运动【答案】BC【解析】【详解】A.由乙图可得()A93NFt=−()B33NFt=+在
未脱离的过程中,整体受力向右,且大小总是不变,恒定为AB12NFF+=匀加速运动的加速度2ABAB3m/sFFamm+==+则A、B脱离之前,它们一直做匀加速运动,其合外力不变,A错误;B.脱离时满足A、B加
速度相同,且弹力为零,故2AA3m/sFm=得AA3NFma==解得2s=tB正确;C.运动位移为22132m6m212xat===C正确;D.脱离后1s内A仍然受到向右的推力,所以A仍然做加速运动,在3st=后A不受
推力,将做匀速直线运动;物体B一直受到向右的拉力而做加速运动,D错误。故选BC。10.如图所示,在水平地面上固定一个半径为R的四分之一圆形轨道AB,轨道右侧固定一个倾角为30°的斜面,斜面顶端固定一大小可忽略的轻滑轮,轻滑轮与OB在同一水平高度。一轻绳跨过定滑轮,左端与
套在圆形轨道上质量为m的小圆环相连,右端与斜面上质量为M的物块相连。在圆形轨道底端A点静止释放小圆环,小圆环运动到图中P点时,轻绳与轨道相切,OP与OB夹角为60°;小圆环运动到B点时速度恰好为零。忽略一切摩擦力阻力,小圆环和物块均可视为质点,物块离斜面底端足够远,重力加速度为g,则下
列说法正确的是()A.小圆环到达B点时的加速度为gB.小圆环到达B点后还能再次回到A点C.小圆环到达P点时,小圆环和物块的速度之比为2:3D.小圆环和物块的质量之比满足332mM−=【答案】AB【解析】【分析】【详解】A.小圆环运动到B点时,小环受到竖直向下的重力,水平
向右的拉力和圆环对小环向左的支持力,因为运动到B点时速度恰好为零,小球的合力为竖直方向的重力,根据牛顿第二定律可知mgma=解得ag=A正确;B.小环和物块组成的系统,在运动过程中,由于忽略一切摩擦力,故只有重力做功,机械能守恒,当小环到达
B点时,速度都为零,此后小环沿圆轨道向下运动,机械能还是守恒,组最终小环和物块速度都减到零,故圆环到达B点后还能再次滑回A点,B正确;C.小环在P点时,小环的速度方向沿绳的方向,根据速度的合成与分解可知,此时小圆环和物块的速
度之比为1:1,C错误;D.设轻滑轮的位置为C,由几何关系可知2OCR=,5ACR=在运动过程中,对环和物块组成的系统,根据动能定理可知51()sin3000mgRMgR−−−=−解得512mM−=D错误。故选AB。三、
实验题11.为探究向心力大小与半径、角速度、质量的关系,某实验小组通过如图甲所示装置进行实验。滑块套在水平杆上,随水平杆一起绕竖直杆做匀速圆周运动,力传感器通过一细绳连接滑块,用来测量向心力F的大小。滑块上固定一遮
光片,宽度为d,光电门可以记录遮光片通过的时间,测得旋转半径为r。滑块随杆匀速圆周运动,每经过光电门一次,通过力传感器和光电门就同时获得一组向心力F和角速度的数据。(1)为了探究向心力与角速度关系,需要控制__________和___________保持不变,某次旋转过程中遮光片经过光
电门时的遮光时间为t,则角速度=__________;(2)以F为纵坐标,以21t为横坐标,可在坐标纸中描出数据点作一条如图乙所示直线,图线斜率为k,则滑块的质量为__________(用k、r、d表示);图线不过坐标原点的原因是_________
_。【答案】①.滑块质量②.旋转半径③.drt④.2krd⑤.滑块受到摩擦力【解析】【详解】(1)[1][2]根据控制变量法,为了探究向心力与角速度的关系,需要控制滑块质量和旋转的半径不变;[3]物体转动的线速度
为dvt=又vr=解得drt=(2)[4]根据向心力公式可知2Fmr=联立解得的22dFmrt=由于2dkmr=可得滑块的质量为2krmd=[5]由图线可知,当0F=而210t可知图线不过坐标原点的原因是滑块受到摩擦力的原因。12.某同学利用图甲所示装置做“探
究加速度与力、质量的关系”实验。(1)备有器材:一端带有滑轮的长木板,电火花打点计时器,流电源,纸带,细绳,小车,钩码,小桶和细沙,垫木,天平(含砝码)。还缺少的一件器材是______;(2)图乙是实验中得到的一条纸带,图中的数字为相邻两个计数点间的距离(每两个计数点间还有4个点没有画出来
),打点计时器所用电源频率为50Hz。由这些已知数据计算:①该小车匀变速直线运动的加速度a=______m/s2(保留3位有效数字);②若当时电网中交变电流的频率略微偏大,但该同学并不知道,则加速度的测量值与
实际值相比______(选填:“偏大”、“偏小”或“不变”);(3)在“探究质量一定,加速度与外力的关系”实验中该同学经过多次实验,以测得的加速度a为纵轴、小车的合力F(沙和沙桶的总重力)为横轴,作出的图象如图丙
所示,该图象不过坐标原点的原因可能是______。(4)在“探究外力一定,加速度与质量的关系”实验中在保证小车的合力F(沙和沙桶的总重力)不变的情况下,改变小车中的钩码质量m,多次实验,求出不同的m对应的加速度a,以m为横坐标,1a为纵坐标,作出
1a-m关系图线如图丁所示,已知图线的斜率为k,纵轴截距为b,则小车的质量M为______。【答案】①.刻度尺②.2.07m/s2③.偏小④.平衡摩擦力时长木板倾角过大⑤.bk【解析】【详解】(1)[1]该实验利用纸带求加速度时要测量纸带的长度,所以必需用到刻度尺
。(2)①[2]加速度可以由逐差法求得()()()2222211.1813.2715.32105.007.049.09102.07m/s990.1CFOCaT−−++−++−===。②[3]当电网
中交变电流的频率略微偏大时,由1Tf=可知周期变小,所以加速度的测量值与实际值相比偏小。(3)[4]由a-F图像其图线不过坐标原点,说明没有力它就有加速度了,所以原因可能是长木板的倾角过大造成的。(4)[5]保证小车的合力F(沙和沙桶的总重力)不变的情况下,对小车与
沙各沙桶系统分析,由牛顿第二定律可得()FmMa=+解得()11mMMmaFFF+==+图像中图线的斜率为k,纵轴截距为b,则1,MkbFF==解得bMk=四、解答题13.图a是我国传统农具——风鼓车,图b是其工作原理示意图,转动摇柄,联动风箱内的风叶,向车斗内送风,入料仓漏口H漏出的谷物经过车斗
,质量大于52.010kg−的谷粒为饱粒,落入第一出料口1AB;质量为551.210kg2.010kg−−的谷粒为瘪粒,落入第二出料口2AB;质量小于51.210kg−的草屑被吹出出风口。已知1A、B、2A三点在同一水平线上,1AB的宽度为0.12m;1A在H正下方,1AH的高度为0.4
m;质量为52.010kg−的谷粒从H漏出,恰好经B点落入2AB,设谷物从H漏出时速度竖直向下,大小为1m/s;谷粒在车斗内所受水平风力恒定且相等,只考虑其所受重力和水平风力作用,取重力加速度g为210m/s。(1)求谷粒从H落到出料口所经历的时间;(2)求谷粒所受水平风力
的大小;(3)若瘪粒恰好能全部落入2AB,求2AB的宽度。【答案】(1)0.2s;(2)41.210N−;(3)0.08m【解析】【详解】(1)谷粒从H落到出料口的过程,竖直方向是初速为1m/s的匀加速直线运动,竖直方向
上有2012hvtgt=+将0.4mh=带入可得0.2st=(2)对质量为52.010kg−的谷粒,从H漏出恰好经B点,水平方向有2312xat=设风力大小为F,由牛顿第二定律Fma=将10.12mx=、0.2st=、52.010kgm−=
带入,联立可解得41.210NF−=(3)对质量等于51.210kg−的瘪粒,恰好落到2A点,设2AB宽度为2x,则有21212xxat=+Fma=将带入可得20.08mx=14.如图,光滑的水平杆OM和竖直轴ON上分别套着环
P和Q,环P的质量m1=m,Q的质量m2=2m,用轻绳连接,一根弹簧左端固定于O点,右端与环P栓接,两环静止时,轻绳与竖直方向的夹角θ=37°,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2。(1)弹簧的弹力和水平杆对P的支持力分别是多少
;(2)绳长仍为l,弹簧的劲度系数为k,要θ=53°,角速度ω的取值。【答案】(1)32mg,3mg;(2)35244gklm+【解析】【详解】(1)对P、Q的受力分析如图所示对Q,由平衡条件,竖直方向上有Tcos3
7°=2mg对P,由平衡条件,竖直方向上有FN2=mg+Tcos37°水平方向上有Tsin37°=F弹解得32Fmg=弹,FN2=3mg(2)①假设此时弹簧处于拉伸状态,则对P有22sin53sin53Tkxml+
=对Q,在竖直方向上有cos532Tmg=设静止时弹簧的压缩量为x1,则由(1)问可知132kxmg=设此时弹簧的伸长量为x2,则有lsin37°+x1+x2=lsin53°联立上式得35244gklm=+②假设此时弹簧处于
收缩状态,此时弹簧的收缩量为x2,,对P有22sin53sin53Tkxml−=且lsin37°+x1-x2=lsin53°其它和①中所述一致,计算仍得35244gklm=+综①②得35244gklm=+15.如图所示,有一倾角
为θ=37°(sin37°=35),下端固定一挡板,挡板与斜面垂直,一长木板上表面的上部分粗糙,下部分光滑,上端放有一质量m的小物块。现让长木板和小物块同时由静止释放,此时刻为计时起点,在第2s末,小物块刚好到达长木板的光滑部分,又经过一段时间,长木板
停在挡板处,小物块刚好到达长木板的下端边缘。已知小物块与长木板的上部分的动摩擦因数138=,长木板与斜面间的动摩擦因数20.5=,长木板的质量M=m。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10m/s2.求:(1)在0~2s时间内长木板和小物块的加速度的大小;(2)长
木板距离挡板多远;(3)长木板的长度。【答案】(1)a1=3m/s2,a2=1m/s2;(2)3m;(3)12m【解析】【详解】(1)在0~2s时间内,m和M的受力分析,其中f1、N1是m与M之间的摩擦力和正压力的大小,f2、N2是M与斜面之间的摩擦力和正压力的大小111fN=1cos
Nmg=222fN=21cosNNmg=+规定沿斜面向下为正,设m和M的加速度分别为a1和a2,由牛顿第二定律得11sinmgfma−=212sinmgffma−+=联立得22123m/s1m/saa==,(2)在t1=2s时,设m和M的
速度分别为v1和v2,则1112226m/s2m/svatvat====,t>t1时,设m和M加速度分别为aʹ1和aʹ2.此时m与M之间摩擦力为零,同理可得对m1sinmgma=216m/sa=对M()22sincosMgMmgMa−+=22–2m/sa=即
M做减速运动,设经过时间t2,M的速度减为零,则有2220vat+=联立得21st=在t1+t2时间内,M距离挡板212112m2Lat==222211m2Lat==123mLLL=+=的(3)长木板的长度就是m相对于M运动的距离为22221112122122221111(
)()12m2222satvtatatvtat=++−++=