【文档说明】2008年高考试题——数学文(海南卷).doc,共(10)页,744.000 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-1a795924603cc983f6786e87de99fbba.html
以下为本文档部分文字说明:
2008年普通高等学校统一考试(海南卷)数学(文科)一、选择题:本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、已知集合M={x|(x+2)(x-1)<0},N={x|x+
1<0},则M∩N=()A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2)2、双曲线221102xy−=的焦距为()A.32B.42C.33D.433、已知复数1zi=−,则21zz=−()A.2B.-2C.2iD.-2i4、设()lnfxxx=,若0'()2
fx=,则0x=()A.2eB.eC.ln22D.ln25、已知平面向量a=(1,-3),b=(4,-2),ab+与a垂直,则是()A.-1B.1C.-2D.26、右面的程序框图,如果输入三个实数a、b、
c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>xB.x>cC.c>bD.b>c7、已知1230aaa,则使得2(1)1iax−(1,2,3)i=都成立的x取值范围是()A.(0,11a)B.(0,12a)C.(0,31a)D.
(0,32a)8、设等比数列{}na的公比2q=,前n项和为nS,则42Sa=()A.2B.4C.152D.1729、平面向量a,b共线的充要条件是()A.a,b方向相同B.a,b两向量中至少有一个为零向量C
.R,ba=D.存在不全为零的实数1,2,120ab+=是否开始输入a,b,cx=ab>x输出x结束x=bx=c否是10、点P(x,y)在直线4x+3y=0上,且满足-14≤x-y≤7,则点P到坐标原点距离的取值范围是()A.[0,5]B.[0,10]C.[5,10]D.
[5,15]11、函数()cos22sinfxxx=+的最小值和最大值分别为()A.-3,1B.-2,2C.-3,32D.-2,3212、已知平面α⊥平面β,α∩β=l,点A∈α,Al,直线AB∥l,直线AC⊥
l,直线m∥α,m∥β,则下列四种位置关系中,不一定...成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β二、填空题:本大题共4小题,每小题5分,满分20分。13、已知{an}为等差数列,a3+a8=
22,a6=7,则a5=____________14、一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为_________15、过椭圆22154xy+=的右焦点作一条
斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为______________16、从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:由以上数据设计了如下茎叶图:甲乙312775502845422925873313046794031235568885
53320224797413313673432356根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论:①___________________________________________________________
_________________________甲品种:271273280285285287292294295301303303307308310314319323325325328331334337352乙品种:28429229530430630731231
3315315316318318320322322324327329331333336337343356②______________________________________________________________________________
______三、解答题:本大题共6小题,满分70分。解答须写出文字说明,证明过程和演算步骤。17、(本小题满分12分)如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2。(1)求cos∠CBE
的值;(2)求AE。18、(本小题满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)。(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出
的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC,证明:'BC∥面EFG。EDCBA224侧视图正视图624GEFC'B'D'CABD19、(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,
7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。20、(本小题满分12分)已知m∈R,直线l:2(1)4m
xmym−+=和圆C:2284160xyxy+−++=。(1)求直线l斜率的取值范围;(2)直线l能否将圆C分割成弧长的比值为12的两段圆弧?为什么?21、(本小题满分12分)设函数()bfxaxx=−,曲线()
yfx=在点(2,(2))f处的切线方程为74120xy−−=。(1)求()yfx=的解析式;(2)证明:曲线()yfx=上任一点处的切线与直线0x=和直线yx=所围成的三角形面积为定值,并求此定值。请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记
分。做答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。22、(本小题满分10分)选修4-1:几何证明选讲如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P。(1)证明:OM·OP=OA2;(2)N为线段AP上一点
,直线NB垂直直线ON,且交圆O于B点。过B点的切线交直线ON于K。证明:∠OKM=90°。23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1:cos()sinxy==为参数,曲线C2:222()22xttyt=−=为参数。(1
)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C,2'C。写出1'C,2'C的参数方程。1'C与2'C公共点的个数和C1与C2公共点的个数是否相同?说明
你的理由。2008年普通高等学校招生全国统一考试(宁夏卷)KBPAOMN文科数学试题参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主工考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误
时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步
应得的累加分数.4.只给整数分数.选择题不给中间分.一、选择题:1.C2.D3.A4.B5.A6.A7.B8.C9.D10.B11.C12.D二、填空题:13.1514.4315.5316.(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉
花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3)甲品种棉花的纤
维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm.(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.注:上面给出了四个结论.如果考生写出其他正确答案,同样给分.
三、解答题17.解:(Ⅰ)因为9060150BCD=+=∠,CBACCD==,所以15CBE=∠.所以62coscos(4530)4CBE+=−=∠.·····························
·······································6分(Ⅱ)在ABE△中,2AB=,由正弦定理2sin(4515)sin(9015)AE=−+.故2sin30cos15AE=122624=+62=−.····················
····················································12分18.解:(Ⅰ)如图····················································
············································3分(Ⅱ)所求多面体体积VVV=−长方体正三棱锥1144622232=−2284(cm)3=.············································
································7分(Ⅲ)证明:在长方体ABCDABCD−中,连结AD,则ADBC∥.因为EG,分别为AA,AD中点,所以ADEG∥,从而EGBC∥.又BC
平面EFG,所以BC∥面EFG.·······················································································
·······················12分19.解:(Ⅰ)总体平均数为1(5678910)7.56+++++=.························································································
······4分(Ⅱ)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(7
8),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果.所以所求的概率为7()15PA=.······
·····················································································································
··12分20.解:(Ⅰ)直线l的方程可化为22411mmyxmm=−++,直线l的斜率21mkm=+,················································
·························································2分4642224622(俯视图)(正视图)(侧视图)ABCDEFGABCD因为21(1)2mm+≤,所以2112mkm=+≤,当且仅当1m=时等号成立.
所以,斜率k的取值范围是1122−,.···················································································5分(Ⅱ)不能.·····
···························································································································6分由(Ⅰ)知l的方程为(4
)ykx=−,其中12k≤.圆C的圆心为(42)C−,,半径2r=.圆心C到直线l的距离221dk=+.················································································
·············································9分由12k≤,得415d≥,即2rd.从而,若l与圆C相交,则圆C截直线l所得的弦所对的圆心角小于23.
所以l不能将圆C分割成弧长的比值为12的两段弧.··························································12分21.解:(Ⅰ)方程74120xy−−=可化为734yx=−.当2x=时,12y=.·················
································································································2分又2()bfxax=+,于是1222744baba−=+=
,,解得13.ab==,故3()fxxx=−.······················································································
·································6分(Ⅱ)设00()Pxy,为曲线上任一点,由231yx=+知曲线在点00()Pxy,处的切线方程为002031()yyxxx−=+−,即00200331()yxxx
xx−−=+−.令0x=得06yx=−,从而得切线与直线0x=的交点坐标为060x−,.令yx=得02yxx==,从而得切线与直线yx=的交点坐标为00(22)xx,.
·················10分所以点00()Pxy,处的切线与直线0x=,yx=所围成的三角形面积为016262xx−=.故曲线()yfx=上任一点处的切线与直线0x=,yx=所围成的三角形的面积为定值,此定值为6.····
······························································································································12分22.解:(Ⅰ)证明:因
为MA是圆O的切线,所以OAAM⊥.又因为APOM⊥,在RtOAM△中,由射影定理知,2OAOMOP=.················································································
·······································5分(Ⅱ)证明:因为BK是圆O的切线,BNOK⊥.同(Ⅰ),有2OBONOK=,又OBOA=,所以OPOMONOK=,即ONOMOPOK=.又NOPMOK=∠∠,所以ON
POMK△∽△,故90OKMOPN==∠∠.··················································10分23.解:(Ⅰ)1C是圆,2C是直线.·········
····························································································2分1C的普通方程为221xy+=
,圆心1(00)C,,半径1r=.2C的普通方程为20xy−+=.因为圆心1C到直线20xy−+=的距离为1,所以2C与1C只有一个公共点.··············································
···················································4分(Ⅱ)压缩后的参数方程分别为1C:cos1sin2xy==,(为参数)2C:22224xt
y=−=,(t为参数)····························8分化为普通方程为:1C:2241xy+=,2C:1222yx=+,联立消元得222210xx++=,其判别
式2(22)4210=−=,所以压缩后的直线2C与椭圆1C仍然只有一个公共点,和1C与2C公共点个数相同.························································
········································································10分