《辽宁中考真题数学》2014年辽宁省大连市中考数学试卷及解析

DOC
  • 阅读 3 次
  • 下载 0 次
  • 页数 22 页
  • 大小 249.402 KB
  • 2024-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《辽宁中考真题数学》2014年辽宁省大连市中考数学试卷及解析
可在后台配置第一页与第二页中间广告代码
《辽宁中考真题数学》2014年辽宁省大连市中考数学试卷及解析
可在后台配置第二页与第三页中间广告代码
《辽宁中考真题数学》2014年辽宁省大连市中考数学试卷及解析
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有3人购买 付费阅读2.40 元
/ 22
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《辽宁中考真题数学》2014年辽宁省大连市中考数学试卷及解析.docx,共(22)页,249.402 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-167872db292bfe83f6b4c5f123fd0952.html

以下为本文档部分文字说明:

辽宁省大连市2014年中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)(2014•大连)3的相反数是()A.3B.﹣3C.D.﹣2.(3分)(2014•大连)如图的几何体是由六个完全相同的正方体组成

的,这个几何体的主视图是()A.B.C.D.3.(3分)(2014•大连)《2013年大连市海洋环境状况公报》显示,2013年大连市管辖海域总面积为29000平方公里,29000用科学记数法表示为()A.2.9×10

3B.2.9×104C.29×103D.0.29×1054.(3分)(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)5.(3分)(2014•大连)下列计算正确的是()A.a+a2=a3

B.(3a)2=6a2C.a6÷a2=a3D.a2•a3=a56.(3分)(2014•大连)不等式组的解集是()A.x>﹣2B.x<﹣2C.x>3D.x<37.(3分)(2014•大连)甲口袋中有1个红球和1个黄球

,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为()A.B.C.D.8.(3分)(2014•大连)一个圆锥的高为4cm,底面圆的半径为3cm,

则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm2二、填空题(共8小题,每小题3分,共24分)9.(3分)(2014•大连)分解因式:x2﹣4=.10.(3分)(2014•大连)函数

y=(x﹣1)2+3的最小值为.11.(3分)(2014•大连)当a=9时,代数式a2+2a+1的值为.12.(3分)(2014•大连)如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE=cm.13.(3分)(2014•大连)如图

,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=.14.(3分)(2014•大连)如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为

m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)15.(3分)(2014•大连)如表是某校女子排球队队员的年龄分布:年龄13141516频数1254则该校女子排球队队员的平均年龄为岁.16.(3分)(2014•大连)

点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是.三、解答题(本题共4小题,17.18.19各9分,20题12分,共39分)17.(9分)计算:(1﹣)++()﹣1.18.(9分)(2014•大连)解方程:=+1.19.(9分)(2014•

大连)如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.20.(12分)(2014•大连)某地为了解气温变化情况,对某月中午12时的气温(单位:℃)进行了统计.如表是根据有关数据制作的统计图表的一部分.分组气温x天数A4≤x<8aB8≤x<126C12≤x

<169D16≤x<208E20≤x<244根据以上信息解答下列问题:(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为天,占这个月总天数的百分比为%,这个月共有天;(2)统计表中的a=,这个月中行12时的气温在范围内的天数最多;(3)求这个月中午12时的气温不低于16℃的天数占

该月总天数的百分比.四、解答题(共3小题,其中21.22各9分,23题10分,共28分)21.(9分)(2014•大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种

产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?22.(9分)(2014•大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路

匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=,b=;(2)求小明的爸爸下山所用的时间.23.(10分)(2014•大连)如图,AB是⊙O

的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=°,理由是;(2)⊙O的半径为3,AC=4,求CD的长.五、解答题(共3题,其中24题11分,25.26各12分,共35分)24.(11分

)(2014•大连)如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为B′.点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′.设直线l与AB相交于点

E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠AB′B;(2)求y与x的函数关系式,并直接写出x的取值范围.25.(12分)(2014•大连)如图1,△ABC中

,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC;(3)若将“点D在BA

的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子

表示).26.(12分)(2014•大连)如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m﹣1).连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC.点C关于直线l的对称点为

C′,连接PC′,即有PC′=PC.将△PBC绕点P逆时针旋转,使点C与点C′重合,得到△PB′C′.(1)该抛物线的解析式为(用含m的式子表示);(2)求证:BC∥y轴;(3)若点B′恰好落在线段BC′上,求此时m的值.答案与解析一、选择题(共8小题,每小题3分,共24分)1.(3分

)考点:相反数..分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)考点

:简单组合体的三视图..分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有2个正方形,第二层有3个正方形.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)考点:科学记数法—表示

较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将29

000用科学记数法表示为:2.9×104.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)考点:坐标与图形变化-平移..

分析:根据向上平移,横坐标不变,纵坐标加解答.解答:解:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选C.点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.(3分)考点:同

底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:根据合并同类项法则,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加对各选项分析判断利用排除法求解.解答:解:A、a与a

2不是同类项,不能合并,故本选项错误;B、(3a)2=9a2,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、a2•a3=a2+3=a5,故本选项正确.故选D.点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,熟记性质并理清指数

的变化是解题的关键.6.(3分)考点:解一元一次不等式组..分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x>3,解②得:x>﹣2,则不等式组的解集是:x>3.故选C.点评:本题考查的是一元一次不等式组的解,解此类题目常常

要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.7.(3分)考点:列表法与树状图法..分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出的两个球都是红的情况,再利用概率公式即可求

得答案.解答:解:画树状图得:∵共有6种等可能的结果,取出的两个球都是红的有1种情况,∴取出的两个球都是红的概率为:.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列

表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)考点:圆锥的计算..分析:首先根据圆锥的高和底面半径求得圆锥的母线长,然后计算侧面积即可.解答:解:∵圆锥的高是

4cm,底面半径是3cm,∴根据勾股定理得:圆锥的母线长为=5cm,则底面周长=6π,侧面面积=×6π×5=15πcm2.故选B.点评:考查了圆锥的计算,首先利用勾股定理求得圆锥的母线长是解决此题的关键.二、填空题(共8小

题,每小题3分,共24分)9.(3分)考点:因式分解-运用公式法..专题:计算题.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.

10.(3分)考点:二次函数的最值..分析:根据顶点式得到它的顶点坐标是(1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.解答:解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2+3的最小值y等于3.故

答案是:3.点评:本题考查了二次函数的最值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.11.(3分)考点:因式分解-运用公式法;代数式求值..分析:直接利用完全平方

公式分解因式进而将已知代入求出即可.解答:解:∵a2+2a+1=(a+1)2,∴当a=9时,原式=(9+1)2=100.故答案为:100.点评:此题主要考查了因式分解法以及代数式求值,正确分解因式是解题关键.12.(3分)考点:三角形中位线定理..分析:根据三角形的中位线得出DE

=BC,代入求出即可.解答:解:∵点D、E分别为△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC.又BC=4cm,∴DE=2cm.故答案是:2.点评:本题主要考查对三角形的中位线定理的理解和掌握,能熟练地运用性质进行计算是解此

题的关键.13.(3分)考点:菱形的性质..分析:根据菱形性质得出AC⊥BD,AD∥B∥,求出∠CBO,根据平行线的性质求出∠ADO即可.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∵∠BCO=55°

,∴∠CBO=90°﹣55°=35°,∵四边形ABCD是菱形,∴AD∥BC,∴∠ADO=∠CBO=35°,故答案为:35°.点评:本题考查了菱形的性质,平行线的性质的应用,注意:菱形的对角线互相垂直,菱形的对边平行.14.

(3分)考点:解直角三角形的应用-仰角俯角问题..分析:根据灯塔顶部B的仰角为35°,BC=41m,可得tan∠BAC=,代入数据即可求出观测点A到灯塔BC的距离AC的长度.解答:解:在Rt△ABC中,∵∠BAC=35°,BC=41m,∴tan∠BAC=,∴AC==≈59(m).故答案为:59.

点评:本题考查了解直角三角形的应用,解答本题的关键是利用仰角构造直角三角形,利用三角函数求解.15.(3分)考点:加权平均数..分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:根据题

意得:(13+14×2+15×5+16×4)÷12=15(岁),答:该校女子排球队队员的平均年龄为15岁;故答案为:15.点评:此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.16.(3分)考点:反比例函数图象上点的坐标特征..分析:

先把点A(x1,y1)、B(x2,y2)代入双曲线y=﹣,用y1、y2表示出x1,x2,再根据y1+y2>0即可得出结论.解答:解:∵A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,∴y1y2<0,y1=﹣,y2=

﹣,∴x1=﹣,x2=﹣,∴x1+x2=﹣﹣=﹣,∵y1+y2>0,y1y2<0,∴﹣>0,即x1+x2>0.故答案为:>0.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的

坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本题共4小题,17.18.19各9分,20题12分,共39分)17.(9分)考点:二次根式的混合运算;负整数指数幂..分析:分别进行二次根式的乘法运算,二次根式的化简,负整数指数幂的运算,然后合并.解答:解:原式=﹣3+2+3=3.点评

:本题考查了二次根式的混合运算,解答本题的关键是掌握各知识点的运算法则.18.(9分)考点:解分式方程..专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:6=x+2x+2,移项合并得:3x=

4,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(9分)考点:全等三角形的判定与性质..专题:证明题.分析:根据两直线平行

,同位角相等可得∠A=∠FBD,∠D=∠ACE,再求出AC=BD,然后利用“角边角”证明△ACE和△BDF全等,根据全等三角形对应边相等证明即可.解答:证明:∵AE∥BF,∴∠A=∠FBD,∵CE∥DF,∴∠D=

∠ACE,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(ASA),∴AE=BF.点评:本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形的判定方法并确定出全等的条件是解题的关键.20.(12分)考点:频数(率)分布表;扇

形统计图..分析:(1)根据统计表即可直接求得气温在8℃至12℃(不含12℃)的天数,根据扇形统计图直接求得占这个月总天数的百分比为,据此即可求得总天数;(2)a等于总天数减去其它各组中对应的天数;(3)利用百分比的定义即可求解.解答:解:(1)这个月中午12时的气温

在8℃至12℃(不含12℃)的天数为6天,占这个月总天数的百分比为20%,这个月共有6÷20%=30(天);(2)a=30﹣6﹣9﹣8﹣4=3(天),这个月中行12时的气温在12≤x<16范围内的天数最多;(3)气温不低于16℃的天数占该月总天数的百分比是:×100%=40%.点评:本

题难度中等,考查统计图表的识别;解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.四、解答题(共3小题,其中21.22各9分,23题10分,共28分)21.(9分)考点:一元二次方程的应用..专题:增长率问题.分析:(1)根据提高后的产量=提高前的产量(1+增

长率),设年平均增长率为x,则第一年的常量是100(1+x),第二年的产量是100(1+x)2,即可列方程求得增长率,然后再求第4年该工厂的年产量.(2)2014年的产量是100(1+x).解答:解:(1)2013年到2015年这种产品产量的年增长率x,则100(1+x)2=121,解得

x1=0.1=10%,x2=﹣2.1(舍去),答:2013年到2015年这种产品产量的年增长率10%.(2)2014年这种产品的产量为:100(1+0.1)=110(万件).答:2014年这种产品的产

量应达到110万件.点评:考查了一元二次方程的应用,本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出方程是解题的关键.22.(9分)考点:一次函数的应用..分析:(1)根据图象可判断出小明到达山顶的时间,爸爸距离山脚下的路程.(2)由图象可

以得出爸爸上山的速度和小明下山的速度,再求出小明从下山到与爸爸相遇用的时间,再求出爸爸上山的路程,小与爸爸相遇后,和爸爸一起以原下山速度返回出发地.利用爸爸行的路程除以小明的速度就是所求的结果.解答:解:(1)由图象可以看出图中a=8

,b=280,故答案为:8,280.(2)由图象可以得出爸爸上山的速度是:280÷8=35米/分,小明下山的速度是:400÷(24﹣8)=25米/分,∴小明从下山到与爸爸相遇用的时间是:(400﹣280)÷(35+25)=2分,∴2分爸爸行的路程:35×2=7

0米,∵小与爸爸相遇后,和爸爸一起以原下山速度返回出发地.∴小明的爸爸下山所用的时间:(280+70)÷25=14分.点评:本题考查函数的图象的知识,有一定的难度,解答此类题目的关键计算出小明下山的速度

及爸爸上山的路程.23.(10分)考点:切线的性质..分析:(1)根据切线的性质定理,即可解答;(2)首先证明△ABC∽△CDB,利用相似三角形的对应边的比相等即可求解.解答:解:(1)∵CD与⊙O相切,∴OC⊥CD,(圆的切线垂直于经过切点的半径)∴∠OCD=90

°;故答案是:90,圆的切线垂直于经过切点的半径;(2)连接BC.∵BD∥AC,∴∠CBD=∠OCD=90°,∴在直角△ABC中,BC===2,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又

∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠OCD,∴△ABC∽△CDB,∴=,∴=,解得:CD=3.点评:本题考查了切线的性质定理以及相似三角形的判定与性质,证明两个三角形相似是本题的关键.五、解答题(共3题,其中24

题11分,25.26各12分,共35分)24.(11分)考点:翻折变换(折叠问题);矩形的性质..分析:(1)先由等腰三角形中的三线合一,得出∠BOE=90°,再由∠ABB′+∠BEF=90°,∠ABB′+∠AB′B=90°,得出∠BEF=∠AB′B

;(2)①当点F在线段CD上时,如图1所示.作FM⊥AB交AB于点E,在RT△EAB′中,利用勾股定理求出AE,再由tan∠AB′B=tan∠BEF列出关系式写出x的取值范围即可,②当点F在点C下方时,如图2所示.利用勾股定理与三角函数,列出关系

式,写出x的取值范围,解答:(1)证明:如图,由四边形ABCD是矩形和折叠的性质可知,BE=B′E,∠BEF=∠B′EF,∴在等腰△BEB′中,EF是角平分线,∴EF⊥BB′,∠BOE=90°,∴∠ABB′+∠BEF=90°,∵∠ABB′+∠AB′B=90°,∴∠

BEF=∠AB′B;(2)解:①当点F在CD之间时,如图1,作FM⊥AB交AB于点E,∵AB=6,BE=EB′,AB′=x,BM=FC=y,∴在RT△EAB′中,EB′2=AE2+AB′2,∴(6﹣AE

)2=AE2+x2解得AE=,tan∠AB′B==,tan∠BEF==,∵由(1)知∠BEF=∠AB′B,∴=,化简,得y=x2﹣x+3,(0<x≤8﹣2)②当点F在点C下方时,如图2所示.设直线EF与BC交于点K设∠ABB′

=∠BKE=∠CKF=θ,则tanθ==.BK=,CK=BC﹣BK=8﹣.∴CF=CK•tanθ=(8﹣)•tanθ=8tanθ﹣BE=x﹣BE.在Rt△EAB′中,EB′2=AE2+AB′2,∴(6﹣BE)2+x2=BE2解得BE=.∴CF=

x﹣BE=x﹣=﹣x2+x﹣3∴y=﹣x2+x﹣3(8﹣2<x≤6)综上所述,y=.点评:本题考查了折叠的问题及矩形的性质,解题的关键是折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.25.(12分)考点:相似形综合题;三角形的外角

性质;全等三角形的判定与性质;等腰三角形的性质;平行线分线段成比例;相似三角形的判定与性质;锐角三角函数的定义..专题:综合题.分析:(1)运用等腰三角形的性质及三角形的外角性质就可解决问题.(2)过点E作EG∥AC,交AB于点G,如图1,要证BE=CE,只需证BG=AG

,由DF=FE可证到DA=AG,只需证到DA=BG即DG=AB,也即DG=AC即可.只需证明△DCA≌△△EDG即可解决问题.(3)过点A作AH⊥BC,垂足为H,如图2,可求出BC=2cosα.过点E作EG∥AC,交AB的延长线于点G,易证△

DCA≌△△EDG,则有DA=EG,CA=DG=1.易证△ADF∽△GDE,则有.由DF=kFE可得DE=EF﹣DF=(1﹣k)EF.从而可以求得AD=,即GE=.易证△ABC∽△GBE,则有,从而可以求出B

E.解答:解:(1)∠DCA=∠BDE.证明:∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE.∴∠BDE=∠DEC﹣∠DBC=∠DCE﹣∠ACB=∠DCA.(2)过点E作EG∥AC,交AB于点G,如图1,则有∠DAC=∠DGE.在△DCA和△EDG中,∴△DCA≌△EDG(A

AS).∴DA=EG,CA=DG.∴DG=AB.∴DA=BG.∵AF∥EG,DF=EF,∴DA=AG.∴AG=BG.∵EG∥AC,∴BE=EC.(3)过点E作EG∥AC,交AB的延长线于点G,如图2,∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE.∴∠BDE=∠DBC﹣∠DEC

=∠ACB﹣∠DCE=∠DCA.∵AC∥EG,∴∠DAC=∠DGE.在△DCA和△EDG中,∴△DCA≌△EDG(AAS).∴DA=EG,CA=DG∴DG=AB=1.∵AF∥EG,∴△ADF∽△GDE.∴.∵DF=kFE,∴DE=EF﹣

DF=(1﹣k)EF.∴.∴AD=.∴GE=AD=.过点A作AH⊥BC,垂足为H,如图2,∵AB=AC,AH⊥BC,∴BH=CH.∴BC=2BH.∵AB=1,∠ABC=α,∴BH=AB•cos∠ABH=cosα.∴BC=2cosα

.∵AC∥EG,∴△ABC∽△GBE.∴.∴.∴BE=.∴BE的长为.点评:本题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、三角形的外角性质、锐角三角函数的定义等知识,综合性较强,有一定的难度.26.(12分

)考点:二次函数综合题;解分式方程;待定系数法求一次函数解析式;待定系数法求二次函数解析式;平行线的判定与性质;三角形内角和定理;等腰三角形的性质;旋转的性质;相似三角形的判定与性质..专题:综合题.分析:(1)只需将A

点坐标(0,m﹣1)代入y=a(x﹣m)2+2m﹣2,即可求出a值,从而得到抛物线的解析式.(2)由点A、P的坐标可求出直线AP的解析式,从而求出点B的横坐标为﹣m;由点P的坐标可求出直线OP的解析式,从而求出直线OP与抛物线的交

点C的横坐标为﹣m.由于点B、C的横坐标相同,故BC∥y轴.(3)利用三角形的内角和定理、图形旋转的性质等知识,结合条件可以证到∠POD=∠BAO,从而可以证到△BAO∽△POD,进而得到=,由BO=m,PD=2m﹣2,AO=m﹣1,OD

=m,可得:=,通过解方程就可解决问题.解答:(1)解:∵A(0,m﹣1)在抛物线y=a(x﹣m)2+2m﹣2上,∴a(0﹣m)2+2m﹣2=m﹣1.∴a=.∴抛物线的解析式为y=(x﹣m)2+2m﹣2.(2)证明

:如图1,设直线PA的解析式为y=kx+b,∵点P(m,2m﹣2),点A(0,m﹣1).∴.解得:.∴直线PA的解析式是y=x+m﹣1.当y=0时,x+m﹣1=0.∵m>1,∴x=﹣m.∴点B的横坐标是﹣m.设直线OP的解析式为y

=k′x,∵点P的坐标为(m,2m﹣2),∴k′m=2m﹣2.∴k′=.∴直线OP的解析式是y=x.联立解得:或.∵点C在第三象限,且m>1,∴点C的横坐标是﹣m.∴BC∥y轴.(3)解:若点B′恰好落在线段BC′上,设对称轴l与x轴的交点为D,连接CC′,如图2,则有∠PB'C'+∠

PB'B=180°.∵△PB′C′是由△PBC绕点P逆时针旋转所得,∴∠PBC=∠PB'C',PB=PB′,∠BPB′=∠CPC′.∴∠PBC+∠PB'B=180°.∵BC∥AO,∴∠ABC+∠BAO=180°.∴∠PB'B=∠BAO.∵PB=PB′,PC

=PC′,∴∠PB′B=∠PBB′=,∴∠PCC′=∠PC′C=.∴∠PB′B=∠PCC′.∴∠BAO=∠PCC′.∵点C关于直线l的对称点为C′,∴CC′⊥l.∵OD⊥l,∴OD∥CC′.∴∠POD=∠PCC′.∴∠POD=∠

BAO.∵∠AOB=∠ODP=90°,∠POD=∠BAO,∴△BAO∽△POD.∴=.∵BO=m,PD=2m﹣2,AO=m﹣1,OD=m,∴=.解得:∴m1=2+,m2=2﹣.经检验:m1=2+,m2=2﹣都是分式方程的解.∵m>1,∴m=2+.∴若点B′恰好落在线段BC′

上,此时m的值为2+.点评:本题考查了用待定系数法求二次函数及一次函数的解析式、相似三角形判定与性质、平行线的判定与性质、等腰三角形的性质、解分式方程、三角形的内角和定理、旋转的性质、抛物线与直线的交

点等知识,综合性比较强,有一定的难度.而证明∠POD=∠BAO,进而证到△BAO∽△POD是解决第3小题的关键.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 140717
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?