【文档说明】湖北省黄冈市麻城实验高中2021届高三下学期5月冲刺模拟考试(五)数学试卷含答案.docx,共(13)页,697.412 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-245867692874556f7370bf1487f9ca68.html
以下为本文档部分文字说明:
麻城实验高中2021届高三第五次模拟数学试题本试卷共22题,满分150分,共6页.考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合,,则A.B.C.D.2.设复数,在复平面内对应的
点关于虚轴对称,且,则A.B.C.D.3.函数的部分图象大致为A.B.C.D.4.将5名学生分配到A,B,C,D,E这5个社区参加义务劳动,每个社区分配1名学生,且学生甲不能分配到A社区,则不同的分配方法种数是A.72B.96C.108D.1205.在数
1和3之间插入个实数,使得这个数构成等差数列,将这个数的和记为,则数列{13lognnbb+}的前78项的和为A.3B.log378C.5D.log386.骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆前轮,圆后
轮的半径均为,,,均是边长为4的等边三角形设点P为后轮上的一点,则在骑动该自行车的过程中,的最大值为A.18B.24C.36D.487.已知F是双曲线22221(0,0)xyabab−=的右焦点,过点F作双曲线一条渐近线的垂线,垂足为A,与另一条渐近
线交于B,且满足3AFFB=,则双曲线的离心率为()A.3B.62C.2D.68.已知实数,,abcR,且ln,1eeeabcabcb==−,则,,abc大小关系为()A.abcB.acbC.bcaD.bac二、多项选择题(
本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,有选错的得0分,部分选对的得2分)9.CPI是居民消费价格指数(comsummerpriceindex)的简称.居民消费价
格指数是一个反映居民家庭一般所购买的消费品价格水平变动情况的宏观经济指标.如图是根据国家统计局发布的2019年4月——2020年4月我国CPI涨跌幅数据绘制的折线图(注:2019年6月与2018年6月相比较,叫同比;2019年6月与2019年5月相比较,叫环
比),根据该折线图,则下列结论正确的是()A.2019年4月至2020年4月各月与去年同期比较,CPI有涨有跌B.2019年4月居民消费价格同比涨幅最小,2020年1月同比涨幅最大C.2020年1月至2020年4月CPI只跌不涨
D.2019年4月至2019年6月CPI涨跌波动不大,变化比较平稳11.下列命题中,下列说法正确的是A.已知随机变量X服从二项分布(,)Bnp,若()30,()20EXDX==,则23p=B.将一组数据中的每
个数据都加上同一个常数后,方差恒不变C.设随机变量服从正态分布(0,1)N,若pP=)1(,则pP−=−21)01(D.某人在10次射击中,击中目标的次数为,~(10,0.8)XXB,则当8X=
时概率最大12.如图,点M是棱长为1的正方体中的侧面上的一个动点包含边界,则下列结论正确的是A.存在无数个点M满足B.当点M在棱上运动时,的最小值为C.在线段上存在点M,使异面直线与CD所成的角是D.满足的点M的轨迹是一段圆弧三、填空题(本大题共4小
题,每小题5分,共20分.把答案填写在答题卡相应位置上)13.向量(12)=,a,(1)x=,b.若()()+⊥−abab,则x=____________14.在各项都为正数的等比数列na中,已知101a,其前n项之积为nT,且126TT=,则
nT取最小值时,n的值是___________.15.抛物线2:2(0)Cypxp=,过C焦点F的直线l与C相交于,AB两点,且,AB在准线上的射影分别为,MN,AFM△的面积与BFN△的面积互为倒数,则MFN△的面积为.16.如图,已知ABC△的顶点C在平面上,点,AB在平面同一侧,且
23,2ACBC==,若,ACBC与平面所成角分别为5,,124则ABC△面积的取值范围是_____.四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)设各项均为正数的等差数列{an}的前n项和为
Sn,S7=35,且a1,a4-1,a7成等比数列.(1)求数列{an}的通项公式;(2)数列{bn}满足bn+bn+1=an,求数列{bn}的前2n项的和T2n.19.(12分)某岗位聘用考核共设置2个环节,竞聘者需要参加全部2个环节的考核,通过聘用考核需要2个
环节同时合格,规定:第1环节考核5个项目至少连续通过3个为合格,否则为不合格;第2环节考核3个项目至少通过2个为合格,否则为不合格.统计已有的测试数据得出第1环节每个项目通过的概率均为12,第2环节每个项目通过的概率均为13,各环节、各项目间相互独立.
(1)求通过改岗位聘用考核的概率;(2)若第1环节考核合格赋分60分,考核不合格赋分0分;第2环节考核合格赋分40分,考核不合格分0分,记2个环节考核后所得赋分为x,求x的分布列与数学期望.20.(12分)如图,在三棱柱ABC-A1
B1C1中,AC=BB1=2BC=2,∠CBB1=2∠CAB=π3,且平面ABC⊥平面B1C1CB.(1)求证:平面ABC⊥平面ACB1;(2)设点P为直线BC的中点,求直线A1P与平面ACB1所成角的正弦值.B1PCB
AA1C121.(12分)设椭圆2222:1xyab+=(0)ab的离心率为32,点A,B,C分别为的上,左,右顶点,且||4BC=.(1)求的标准方程;(2)点D为直线AB上的动点,过点D作lAC∥,设l与的交点为P,Q,求||||PDQD的最大值.22.(12分
)已知函数()()lnfxxxa=−+的最小值为0,其中0a.(1)求的值;(2)求证:对任意的)0,x+,1[,)2k+,有()2fxkx;(3)记222214123(1)(1)(1)(1
)ennnnnnnnT−++++=,x为不超过x的最大整数,求][nT的值.麻城实验高中2021届高三年级五月模拟考试(五)答案1—8DCBBACBD9.BD10.AD11.BCD12.AD13.
2x=14.915.216.3,317.(1)(2)19.解:(1)证明:因为AC=2BC=2,所以BC=1.A1zC1B1CABPxyE因为2∠ACB=π3,所以∠ACB=π6.在△ABC中,BCsinA=ACsinB,即1sinπ6=2sinB,所
以sinB=1,即AB⊥BC.……2分又因为平面ABC⊥平面B1C1CB,平面ABC∩平面B1C1CB=BC,AB平面ABC,所以AB⊥平面B1C1CB.又B1C平面B1C1CB,所以AB⊥B1C,在△B1BC中,B1B=2,BC=1,∠CBB1=π3,所以B1C2=B1B2
+BC2-2B1BBCcosπ3=3,即B1C=3,所以B1C⊥BC.……4分而AB⊥B1C,AB平面ABC,BC平面ABC,AB∩BC=B,所以B1C⊥平面ABC.又B1C平面ACB1,所以平
面ABC⊥平面ACB1.……6分(2)在平面ABC中过点C作AC的垂线CE,分别以CE,CA,CB1所在直线为x,y,z轴建立如图所示的空间直角坐标系:则B(32,12,0),A(0,2,0),B1(0,0,3),所以P(34,14,0),→B1
A1=→BA=(-32,32,0),……8分所以A1(-32,32,3),所以→A1P=(334,-54,-3),平面ACB1的一个法向量为→n=(1,0,0),……10分设直线A1P与平面ACB1所成的角为α,则sinα=|cos<→A1P,→n>|=|→A1P·→n|
|→A1P||→n|=3342716+2516+3=3310.20.(1)记,ijAB(1,2,3,4,5i=,1,2,3j=)分别为两个环节第,ij个项目通过1分,ijAB之间相互独立2分12345123451234512345
(=(PPAAAAAAAAAAAAAAAAAAAA++++第1环节通过)123451234563)3216AAAAAAAAAA++==··············································
····································3分1231231231237(=()27PPBBBBBBBBBBBB+++=第2环节通过)·················································4分则377(==1627144P
通过应聘考核).··················································································5分(2)依题意,=0,40,60,100x.································
···························································6分3765(=0)=(1)(1)1627108Px−−=;3791(=40)=(1)1627432Px−
=;···········································8分3715(=60)=(1)1627108Px−=;377(=100)=1627144Px=.···························
·······················10分故x的分布列为x04060100P65108914321510871446591157()0406010021.62108432108144Ex=+++··················
······································12分21.(1)由已知24a=,得2a=.又因为32e=,所以3c=.所以2221bac=−=.所求的标准方程为2214xy+=.···························
····························4分(2)解法一:设直线l的方程为12yx=−+.····································································5分联立方程组221,21.4yxxy=−+
+=消去y,得2214()42xx+−+=整理得:222220xx−+−=①·························································
······························6分由△>0,得22−···························································
······································7分联立方程组12220yxxy=−+−+=,解得D的坐标为11,2+−···············································
······8分设11(,)Pxy,22(,)Qxy,由①知12212222xxxx+==−②·················································
·············9分又15|||(1)|2PDx=−−,25||(1)2QDx=−−····························································10分所以,212125||||(1)()(
1)4PDQDxxxx=−−++−③将②代入③,得25||||14PDQD=−()2,2−························································11分当0=时,||||PDQD有最大值54.··
············································································12分解法二:(1)同法一;(2)设(2,1)(2,)ADAB==−−=−−,则(2,1)D
−−····································5分由点斜式,可得直线l的方程为1(1)(2)2yx−−=−+,即1212yx=−−+.················6分联立方程组22121214yxxy=−−++=,消去
y,得22(42)880xx+−+−=①··········································································7分由22(42
)4(88)0=−−−解得121222−+,·································································································8分设11(,)
Pxy,22(,)Qxy,由①得122122488xxxx+=−=−②····························································9分由题意可知15|||2|2
PDx=−,25||22QDx=+·························································10分所以212125||||2()44PDQDxxxx
=+++③将②代入③得225||||445||4PDQD=−=−·····························································11分当12=时,||||PDQD有最大值54.·········
·····································································12分22.(1)()()111xaxaxafxxa+−=−+=−+,令
()0fx=,得1xa=−,()fx在(),1aa−−单调递减,()1,a−+单调递增,()()min110fxfaa=−=−=,所以1a=.(2)令()()()22ln1gxfxkxxxkx=−=−+−,则()()21211211xkxkgxkxxx−−−=−−=++,当
12k时,1202kk−,所以)0,x+,()0gx恒成立,因此()gx在)0,+上单调递减,从而对任意的)0,x+,总有()()00gxg=,即对任意的)0,x+,有2()fxkx成立.(3)nnniTnin41)1ln(ln12−−+
==,由(1)有xx+)1ln(1434141214141)1ln(ln1212+=−−+=−−−−+===nnnnnnnninnniTninin.由(2)有)(212121)1ln(22xxxxxx−+=−+,当]1,0(x时xx21)1ln(+,021414141
241)1ln(ln1212=−−+=−−−−+===nnnnnnnninnniTninin,所以有1enT≤.又21=T,18215e28T−=,所以][nT的取值只有可能是2,1.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue10
0.com