【文档说明】湖北省襄阳市第四中学2023届高三5月适应性考试数学试卷答案.pdf,共(5)页,332.357 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-239b9c9d411d8e046d8f6f8e64b8d7be.html
以下为本文档部分文字说明:
2023年普通高等学校招生全国统一考试适应性考试数学答案1.【答案】B【详解】充要条件ABABA2.【答案】A【详解】iiiZ2212,虚部为23.【答案】D【详解】第一图形面积为43,后面的阴影部分的面积为前一个的43,第n个图中的阴影部分的面积为nnS
4333434314.【答案】D【详解】rrrrrrrrrrrrrxCxxCxxCT121212636626662661
则常数项r=2,2401224263CT5.【答案】C【详解】设点MOMAyxM2,,222224482yyx∴动点M的轨迹为0443322xyx,若对R直线bxkyl1:
与圆C恒有公共点,b,1在圆内部31531553083322bbb6.【答案】A【详解】不相邻插空法12036A7.【答案】B【详解】cabcabCSCsin3sin216622
,由余弦定理知:13sin3cos2sin3cos2sin3cos2cos22222222ccabbacabcabbacabcabbacabbac令231323132313131最小值为bax
xxxba8.【答案】C【详解】设AB所在直线方程为,,,,2211yxByxActyx得联合12222byaxty-cx026422222btcybyat222421222221yy2atbbatbcby
y222222121atbtabtAB直线CD方程为:x=ty+c的距离为与垂线直线CDAB212tcd∴矩形ABCD的面积为2222224atbbtbabcdABS
,设bmbtb222,,2222bmtb则mcmcmmatbbtb2222222221,要使S最大,则只需mcm21的值最大,即mcm2的值最小即可,由题可知,当这个平行四边形为矩形时,其面积最大,即当t=0时,有S最大值
,即m=b时,mcm2的值最小,由双勾函数性质mcmy2在(0,c)为减为增,,c又mcmbmbm2,时,当有最小值,2,2424,222222bbbbbcbcb,又
2,2,242bbb法二:sin,cos2,4CDO2222cdcaabCDSSOCD,sincos221442222ccaabSSOCD代入数据计算可得2,2b9.【答
案】BD【详解】A.以三棱锥为例,A错误C.两个斜棱柱的组合体,C错误10.【答案】BC【详解】A.CBAPCAPCBPBAPCPBPAPCBAPCP不一
定为0.2,A错误B.若A、B相互独立,则BA,也相互独立BPAPBPAPBAP11正确B0.032,0.80.4C.如果A,B互斥,则BA,则8.002.06.0BAPBPAPBAP,C正确D.如果,A
B那么31B/AP,6.0APBPAPABPAPBAPD错误11.【答案】AB【详解】DCADANAMAP2AB,AB,EBDC//,由等和线意义知2,1M∴答案选A
B12.【答案】BC【详解】:A选项:错误不成立当A11时1,21!!,nnnenB选项:2113121nnnn,即证明2111nnnnn,证明,tnt11虽然成立,∴B选
项正确C选项将11xnx中的x替换为21ni,显然112ni,2211ninin22222111211111nnnnnnnnnn故,当43222212111,432121212enn
nnnnnnn故时,∴C选项正确D选项:将2Nn111*nnnxxnx且其中,替换为中的,则nnnn111,则ennnnnnn11,111故,则e
nnnn13213221,又e121322132∴错误,答案为BC13.【答案】8【详解】,4ba由基本不等式变形成为222222282babababa,,得的最小值为814.【答案
】265【详解】2316,462naaan,插入3个数之后得新数列,通项4143nbn,∴新数列的第43项为26515.【答案】261,【详解】设双曲线另外一个焦点F,aPFPF21521aPFPAPFAFPA,当P、A、F三点共线时,PA+PF有最
小值,418210521aaaPFPA,∴双曲线C的离心率取值范围为261,16.【答案】28【详解】取AB、CD的中点,由平行四边形边长和对面线的关系可得22222222222222416
4222PNPMCDABPNPMCDPNABPMPDPCPBPA10,2022222222PNPMPOMNPNPM,建系也可,关键是将其放到正方体17.【详解】(1)2111111111112211221
1naaaaaaaaaaaaaannnnnn212111naanaaaannnnnn,112nnan,11nnaann通项公式为(2)
1321332,32,31313312312311nnnnnnnnnnnnbbnbnb则令,,,1,27.13212*bbbbnNnn当n取2时,bn取最大值18【详解】(1)以O为原点,OA、OC、OA1分别为x
、y、z轴建系如图所示空间直角坐标系:A(2,0,0),A1(0,0,32),C(0,32,0),设32,32,2C,32,0,4,0,0,2,11BBBBBD,32,0,2232,0,21DBB32,32,43232,0,2211
ACOA,又54BD51032323222411ACDA(3)0,32,2BC32,0,21BB,设平面BCC1B1的法向量为3032
2032200,,1xyxzxBCnBBnzyxn合,则0,0,4,1,1,31ABn,5154cos5155434cos111ABnABABn∴点A1到平面BCC1B1距离为515419.【详
解】(1)根据列表得841.3444.494030960600120222x,所以依据05.0的独立性检验,蜜蜂进入不同颜色的蜂蜡罐与蜜蜂种类有关联M品种进入黄色蜂蜡罐的频率为32M品种进入褐色蜂蜡罐的频率为31N品种进入黄色蜂蜡罐的频率为65N品种进入褐色蜂蜡
罐的频率为61依据频率分析,心中黄色蜂蜡优于褐色的占32,心中黄色蜂蜡优于褐色的占65∴M、N中进入黄色蜂蜡罐的与蜂蜡罐有显著差异(2)由已知上式知,1|,,11|,baaABPbabAPbaaABPbaaAP则A
BPAPABPAPBAPABPBP||baabababaabaababbaabaa11111baaAP20.【详解】(1)sin5sin3tan4sin
3xsocxxf为偶函数,1cossin5sin5cossin543tan03tan4xxxf54cos,53sin6sin106,的最小值为xf,57cossin(2)
334sin1333cossin322xxxxfxfxg其中,011cos,01sin22,b)(z32(z2622
11kkakk),得ba4zkkkkzkkkk21212121,,342,,,424由的值分析可知与cossin,,3由(b)-(a)式得,,,12,,,2221122112zkkkkzkkkk
又24,0在xg上单调递增,kk22,223243,,40,3,1,,,122112zkkkk又,检验当3上时,代入(a)式得,1k,不可
能使33,(去)检验n=1时满足1,3,1,31342313sin22221.【详解】解(1)设4,,4,,4,,
4,244233222211xxDxxCxxBxxA,设直线AB:2pkxy,联合22121222,2,022pxxpkxxppkxxpyx得12412212212kpx
xxxkAB,同理可得32821221,11222222pkkpCDABSkpCDABCD(当且仅当12k时取等号)∴p=2,∴抛物线的方程为yx42(2)当P为(1,1)时,00,yxBPA、、共线,21212221
214114114xxxxxxxx(a),同理由C、P、D共线43434xxxx(b)由A、C、Q共线可得3100310302301021444xxxyxxxxyxxxyx(c)同理由B、D、Q共线可得4200
424xxxyxx(d)由(a)(c)得044441414002003032003003221xyxyxxxxxxxxyxxxxx(e)由(b)(d)得044441414003
002032002020334xyxyxxxxxxxxyxxxxx(f)由(e)(f)得0443200230xxyxxxx,即上在02202-2440
0000yxQyxyxx。22.【详解】解:(1)xf的定义域为R,上单调递增在,时,当Rxfaxxaaxxexfx012,2,1'22,当得时,由0',22,
xfa,24,24,,24,24222221aaaaxfaaxaax在单增,在24,2422aaaa上单减,∴综上,当时,2,
2aRxf在上单增,当,24,24,,22,22aaaaxfa在时,上单增,在24,2422aaaa
上单减。(2)法一:20,在xf上有两个极值点21,xx2522200401242aaaa,由韦达定理知1,2121xxaxx,2232223222222112112211
axeaxaxexfaxeaxaxexfxxxx1,0,2,1,25,212xxa1,021212122222111111111212111111121
xeexxeexxexxeaxeaxexfxfxxxxxxxx,合2111xxxxee
xxeexG1,0,111,0,1111111'1321322312xxeexxxxexexxxxxxexxex
Gxxxxxxx令nxxxxF11,eGxGxGxFF4110,0',0,0)1(为增而,在易证22212142,0exfxfxfxf,即转化为证明exfxf421由上可知,结论得证
222142exfxf法二:(换a)422442242222aaaeaaaeag易证,0ag242424
22442'22222aaaaeaaaaeaaag25,2,0'在agag上为域,得证。法三:144242422'24224224222
aeaaaaeaaeagaaaa042442224244242424242414242222222222222242
aaaaaaaaaaaaaaaaaaaaaaaaea得证为域,而,在egag42252获得更多资源请扫码加入享学资源网微信公众号www.xi
angxue100.com