【文档说明】河北省保定市部分学校2022届高三上学期期中考试数学试题含答案.docx,共(10)页,896.598 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-16bdfa0227bfee2ca7ea82799eb4a43f.html
以下为本文档部分文字说明:
绝密★启用前保定市部分学校2022届高三上学期期中考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑
。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上.写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。4.本试卷主要考试内容:高考全部内容。一、选择题:本题共8小题,每小题5分,共40分,
在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数i(1i)z=+,则2z=()A.2−B.2C.2i−D.2i2.已知集合{25}Mxx=−∣,{(1)(6)0}Nxxx=−−∣,则()A.MNB.{26}MNxx
=−∣C.NMD.{56}MNxx=∣3.中国互联网络信息中心(CNNIC)发布了第46次《中国互联网络发展状况统计报告》,报告公布了截至2020年6月的中国互联网状况数据与对比数据,根据下图,下面结论不正确的是()A.2020年6月我国网民规模接近
9.4亿,相比2020年3月新增网民3625万B.2020年6月我国互联网普及率达到67%,相比2020年3月增长2.5%C.2018年12月我国互联网普及率不到60%,经过半年后普及率超过60%D.2018年6月我国网民规模比2017年6月我国网民
规模增加的百分比大于7%4.圆2240xyx+−=上的点到直线3490xy−+=的距离的最小值为()A.1B.2C.4D.55.已知120ABC=,2AB=,1BC=,则|2|ABBC−=()A.23B.22C.2D.46.函数326(0)yxxx=−+…的最大值为()A
.32B.27C.16D.407.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,1AA⊥底面
,底面扇环所对的圆心角为2,弧AD长度为弧BC长度的3倍,且2CD=,则该曲池的体积为()A.92B.6C.112D.58.设函数()2sin()10,02fxx=+−剟的最小正周期为4,且()fx在[
0,5]内恰有3个零点,则的取值范围是()A.50,312B.0,,432C.50,612D.0,,632二、选择题:本题
共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知tan4=,1tan4=−,则()A.tan()tan1−=B.为锐角C.3tan45+=
D.tan2tan2=10.已知点()00,Pxy是抛物线2:4Cyx=上一动点,则()A.C的焦点坐标为(2,0)B.C的准线方程为10x+=C.()2200011xxy+=−+D.02011xy++的最小
值为3411.已知()fx是定义域为(,0)(0,)−+的奇函数,函数1()()gxfxx=+,(1)1f=−,当210xx时,()()12111222xxfxxxxfxx−−恒成立,则()A.()gx在(0,)+上单调递增B.()gx的图象与x轴有2个交点C.64(3)(
2)log2ff+−D.不等式()0gx的解集为(1,0)(0,1)−12.已知四面体ABCD的每个顶点都在球O(O为球心)的球面上,ABC△为等边三角形,M为AC的中点,2ABBD==,2AD=,且ACBD⊥,则()A.BM⊥平面ACDB.O平面AB
CC.O到AC的距离为233D.二面角ACDO−−的正切值为63三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.函数()lg162xfxx=+−的定义域为________.14.某公司要从7位男员工和6位女员工中选3人去外地学习,则至少选派2位男员工的不同选法种数
为________.15.在中国现代绘画史上,徐悲鸿的马独步画坛,无人能与之相颉颃.《八骏图》是徐悲鸿最著名的作品之一,画中刚劲矫健、剽悍的骏马,在人们心中是自由和力量的象征,鼓舞人们积极向上.现有8匹善于奔跑的马,它们奔跑的速度各
有差异.已知第(1,2,,7)ii=匹马的最长日行路程是第1i+匹马最长日行路程的1.1倍,且第8匹马的最长日行路程为400里,则这8匹马的最长日行路程之和为________里.(取81.12.14=)16.已知椭圆C的中心为坐标原点,焦点在
y轴上,1F,2F为C的两个焦点,C的短轴长为4,且C上存在一点P,使得126PFPF=,写出C的一个标准方程:________.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)在等差数列na中,24a=,83
2aa=.(1)求na的通项公式;(2)求数列()22111nana−+的前n项和nS.18.(12分)如图,在棱长为3的正方体1111ABCDABCD−中,E,F分别为棱AB,CD上一点,且1AECF==.(1
)证明:BF∥平面1CDE.(2)求1BC与平面1CDE所成角的正弦值.19.(12分)a,b,c分别为钝角ABC△内角A,B,C的对边.已知3coscoscosaAbCcB=+.(1)求cos4A+;(2)若2b=,cb,求c的取值范围.20.(12分)已知双曲线2
222:1(0,0)xyCabab−=的离心率为2,且过点(2,3)P.(1)求C的方程;(2)若斜率为55的直线l与C交于P,Q两点,且与x轴交于点M,若Q为PM的中点,求l的方程.21.(12分)新疆棉以绒长、品质好、产量高著称于世.现有两类以新疆长绒棉为主要原材料的均码
服装,A类服装为纯棉服饰,成本价为120元/件,总量中有30%将按照原价200元/件的价格销售给非会员顾客,有50%将按照8.5折的价格销售给会员顾客.B类服装为全棉服饰,成本价为160元/件,总量中有20%将按照原价300元/件的价格销售给非会员顾客,有40%将按照8.5折的价
格销售给会员顾客.这两类服装剩余部分将会在换季促销时按照原价6折的价格销售给顾客,并能全部售完.(1)通过计算比较这两类服装单件收益的期望(收益=售价-成本);(2)某服装专卖店店庆当天,全场A,B两类服装均以会员价销售.假设每位来
店购买A,B两类服装的顾客只选其中一类购买,每位顾客限购1件,且购买了服装的顾客中购买A类服装的概率为13.已知该店店庆当天这两类服装共售出5件,设X为该店当天所售服装中B类服装的件数,Y为当天销售这两类服装带来的总收益.求当()0.5(N)PXnn„时,n可取的最
大值及Y的期望()EY.22.(12分)已知函数2()lnfxaxxb=+的图象在点(1,(1))f处的切线方程为22yx=−.(1)求()fx在(0,)ab+内的单调区间.(2)设函数24()e2elnxxgxxxx=−−,证明:()()1fxgx+.高三数学
考试参考答案1.C【解析】本题考查复数的四则运算,考查数学运算的核心素养.因为i(1i)1iz=+=−+,所以22iz=−.2.B【解析】本题考查一元二次不等式的解法与集合的交集、并集、子集,考查数学运算的核心素养.因为{25}Mxx=−∣,{16}Nxx=∣,所以{26}MNxx
=−∣.3.D【解析】本题考查统计图表的应用,考查数据分析的核心素养.2018年6月我国网民规模比2017年6月我国网民规模增加的比例为8016675116505050501010.0677%7511675116750001500−==.4.A【解析】本题
考查直线与圆,考查直观想象的核心素养.由2240xyx+−=,得22(2)4xy−+=,圆心为(2,0),半径2r=,圆心到直线3490xy−+=的距离22|32409|334d−+==+,故圆22
40xyx+−=上的点到直线3490xy−+=的距离的最小值为1dr−=.5.C【解析】本题是一个考查平面向量数量积的易错题,易错点为AB与BC的夹角.因为2222221|2|44442421442A
BBCABABBCBCABBABCBC−=−+=++=+−+=,所以|2|2ABBC−=.6.A【解析】本题考查导数的应用,考查数学运算的核心素养.因为3(4)yxx=−−,所以当04x剟
时,0y…;当4x时,0y.因此,326(0)yxxx=−+…的最大值为3246432−+=.7.B【解析】本题考查数学文化与简单几何体的综合,考查空间想象能力.不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧
AD长度为弧BC长度的3倍可知3Rr=,22CDRrr=−==,即1r=.故该曲池的体积()22364VRr=−=.8.D【解析】本题考查三角函数的图象及其性质,考查推理论证能力与数形结合的数学思想.因为24T==,所以
12=.由()0fx=,得11sin22x+=.当[0,5]x时,15,22x++,又02剟,则55322+剟.因为1sin2yx=−在[0,3]上的零点为6,56,136
,176,且()fx在[0,5]内恰有3个零点,所以0,613517626+剟„或,62175,62+„„解得0,,632.9.ACD【解析】本题考查三角恒等变换,考查数学运算的核心素养.因为tan
4=,1tan4=−,所以tan()tantantan1−=−=,未必是锐角(比如可以是第三象限角),1tan3tan41tan5++==−,8tan2tan215
==−.10.BCD【解析】本题考查抛物线的定义与性质以及基本不等式的应用,考查逻辑推理与数学运算的核心素养.C的焦点坐标为(1,0),C的准线方程为10x+=,根据抛物线的定义可得P到焦点的距离等于P到准线的距离,即()22000
11xxy+=−+.因为2004yx=,所以22000222000111111132141414444yyxyyy++=+=+−−=+++…,当且仅当20201141yy+=+,即201y=时,等号成立,故02011
xy++的最小值为34.11.BC【解析】本题考查函数性质的综合,考查推理论证能力与抽象概括能力.()()12111222xxfxxxxfxx−−,两边同时除以12xx得()()122111fxfxxx−−,即()()121
211fxfxxx++,得()()12gxgx,则()gx在(0,)+上单调递减,A错误.因为()fx是定义域为(,0)(0,)−+的奇函数,且(1)0g=,所以()gx在(,0)−上单调递减,且(1)(1)0gg=−=,B正确.由(3
)(2)gg得11(3)(2)32ff++,即641(3)(2)log26ff−=,即64(3)(2)log2ff+−,C正确.不等式()0gx的解集为(,1)(0,1)−−,D错误.12.AD【解析】本题考查四面体的外接球与二
面角,考查空间想象能力与推理论证能力.设ABC△的中心为G,过点G作直线l⊥平面ABC,则球心O在l上.由M为AC的中点,得BMAC⊥.因为ACBD⊥,所以AC⊥平面BDM,则ACDM⊥,所以2ADD
C==,所以222ADDCAC+=,所以90ADC=,112DMAC==,所以222DMBMBD+=,所以BMDM⊥,可得BM⊥平面ACD,所以球心O在直线MB上,因此O与G重合.过M作MHCD⊥于H,连接OH
,则OHCD⊥,从而OHM为二面角ACDO−−的平面角.因为333BMOM==,222ADHM==,所以O到AC的距离为33,且6tan3OMOHMHM==.13.(0,4]【解析】本题考查函数的定义域与基本初等函数,考查数学运算的核心素养.由1620x−
…,得4x„,因为0x,所以04x„.14.161【解析】本题考查排列组合的应用,考查分类讨论的数学思想.若派2位男员工去学习,则有2176CC126=6种选法;若派3位男员工去学习,则有37C35=种选法.故至少选派2位男员工的选法种数
为12635161+=.15.4560【解析】本题考查等比数列的应用,考查抽象概括能力.依题意可得,第8匹马、第7匹马、……、第1匹马的最长日行路程里数依次成等比数列,且首项为400,公比为1.1,故这8匹马的最长日行路程之和为()840011.14000
(2.141)456011.1−=−=−里.16.22149xy+=(答案不唯一,只要形如22214xya+=,且2496a…即可)【解析】本题考查椭圆的方程与性质,考查逻辑推理与数学运算的核心素养.因为126PFPF=,所以12272
PFPFPFa+==,则227aPF=.又因为2acPFac−+剟,所以27aac−…,即57ca….根据题意可设C的方程为22221(0)xyabba+=,则24b=,2b=,由57ca…,得22245117baa−=−…,解得2496a
….17.解:(1)设na的公差为d,因为24a=,832aa=,所以()1114,722,adadad+=+=+2分解得13,1,ad==·····································
··························································4分所以1(1)2naandn=+−=+.·································
·····································5分(2)由(1)知,()222211111(2)(3)nannna−=−+++,·····································7分故2222222221
111111163445(2)(3)9(3)9(3)nnnSnnnn+=−+−++−=−=++++.·····10分18.(1)证明:在正方形ABCD中,因为AECF=,所以BEDF=且BEDF∥,1分所以四边形BEDF为平行四边形,···
·······························································2分从而BFDE∥,·······································
··················································3分又BF平面1CDE,DE平面1CDE,··················································
······4分所以BF∥平面1CDE.···············································································5分(2)解:以D
为坐标原点,DA的方向为x轴的正方向建立空间直角坐标系Dxyz−,如图所示,则(0,0,0)D,(3,1,0)E,(3,3,0)B,1(0,3,3)C,································6分(3,1,0)DE=,
1(0,3,3)DC=,1(3,0,3)BC=−.············································7分设平面1CDE的法向量为(,,)nxyz=,则10nDEnDC==,即30,330,xyyz+=+=····················
························································8分令1x=,得(1,3,3)n=−.···················································
·························9分因此1113938cos,191932||nBCnBCnBC−+===,··········································11分故1BC与平面1CDE所成角的正弦值为3819.·········
·········································12分19.解:(1)因为3coscoscosaAbCcB=+,所以3sincossincossincosAABCCB=+,···········
·······································1分即3sincossin()sinAABCA=+=,·····························································2分又sin0A,
所以c1cos3A=,·····································································3分且22sin3A=,············································
·············································4分故224cos(cossin)426AAA−+=−=.···························
·····················6分(2)因为1cos03A=,所以A为锐角,························································7分又cb,所以CB,因为ABC△为钝角三角形,所以C为钝角.··········
···········································8分因为222242cos43abcbcAcc=+−=−+,··················································
·10分所以2224803abcc+−=−,·····································································11分解得6c.························
·······································································12分20.解:(1)因为212cbeaa==+=,所以3b
a=,即3ba=.················2分将点P的坐标代入222213xyaa−=,得224913aa−=,···········································3分解得21a=
,故C的方程为2213yx−=.·························································4分(2)设()11,Pxy,()22,Qxy,(,0)Mm,因为Q为PM的中点,所以122yy=.················
············································5分因为直线l的斜率为55,所以可设l的方程为5xyt=+,·······························6分联立221,35,yxxyt−==+得()22146
5310ytyt++−=,···········································7分()()222(65)4143112140ttt=−−=+,············································8分由韦达定
理可得12357tyy+=−,()2123114tyy−=.········································9分因为122yy=,所以1223537tyyy+==−,解得257ty=−
,·························10分()22212231522714ttyyy−==−=,解得221t=,······································11分即21t=,故l的方程为5210xy−=.······
········································12分21.解:(1)设A类服装、B类服装的单件收益分别为1X元,2X元,则()10.32000.52000.850.22000.612049EX=++−=,········
···············2分()20.23000.43000.850.43000.616074EX=++−=,·······················4分()()12EXEX,故B类服装单件收益的期望更高.··········
·······························5分(2)由题意可知,2~5,3XB,·································································6分511(0)3
243PX===,14152110(1)C33243PX===,23252140(2)C33243PX===,32352180(3)C33243PX===,424521
80(4)C33243PX===.·································································7分因为1104017(3)0.524381PX++==,1104080131(
4)0.5243243PX+++==,8分所以当()0.5()PXnnN„时,n可取的最大值为3.······································9分(2000.85120)(5)(3000.85160)25045YXXX=−−+−=+(元
),·············10分因为210()533EX==,·············································································11分所以()(25045
)25045()400EYEXEX=+=+=(元).································12分22.(1)解:因为()(2ln1)fxaxx=+,·····················································
···1分所以(1)2fa==.·····················································································2分又(1)0fb=
=,所以2ab+=.···································································3分当e0ex时,()0fx;当e2ex时,()0fx.·························
····4分所以()fx在(0,)ab+内的单调递减区间为e0,e,单调递增区间为e,2e.····5分(2)证明:由(1)知()()()22222()()2lne2elne2lnxxxfxgxxxxxxxxx+=+−−=−
−.·················································································································6分设函数2()2l
nxxx=−,2()2xxx=−.当01x时,()0x;当1x时,()0x.所以min()()(1)1xx==…,·7分所以2()()exfxgxx+−….····················································
·······················8分设函数2()e(0)xhxxx=−,则()e2(0)xhxxx=−,设()e2(0)xpxxx=−,则()e2(0)xpxx=−,令()0p
x=,得ln2x=,·········································9分则min()(ln2)2(1ln2)0pxp==−,····································
·······················10分所以()0hx,从而()hx为增函数,则()(0)1hxh=,··································11分因此2()()e1xfxgxx+−…,故(
)()1fxgx+.··········································12分